function [J grad] = nnCostFunction(nn_params, ... input_layer_size, ... hidden_layer_size, ... num_labels, ... X, y, lambda) %NNCOSTFUNCTION Implements the neural network cost function for a two layer %neural network which performs classification % [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ... % X, y, lambda) computes the cost and gradient of the neural network. The % parameters for the neural network are "unrolled" into the vector % nn_params and need to be converted back into the weight matrices. % % The returned parameter grad should be a "unrolled" vector of the % partial derivatives of the neural network. % % Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices % for our 2 layer neural network Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ... hidden_layer_size, (input_layer_size + 1)); Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ... num_labels, (hidden_layer_size + 1)); % Setup some useful variables m = size(X, 1); % You need to return the following variables correctly J = 0; Theta1_grad = zeros(size(Theta1)); Theta2_grad = zeros(size(Theta2)); % ====================== YOUR CODE HERE ====================== % Instructions: You should complete the code by working through the % following parts. % % Part 1: Feedforward the neural network and return the cost in the % variable J. After implementing Part 1, you can verify that your % cost function computation is correct by verifying the cost % computed in ex4.m % % Part 2: Implement the backpropagation algorithm to compute the gradients % Theta1_grad and Theta2_grad. You should return the partial derivatives of % the cost function with respect to Theta1 and Theta2 in Theta1_grad and % Theta2_grad, respectively. After implementing Part 2, you can check % that your implementation is correct by running checkNNGradients % % Note: The vector y passed into the function is a vector of labels % containing values from 1..K. You need to map this vector into a % binary vector of 1's and 0's to be used with the neural network % cost function. % % Hint: We recommend implementing backpropagation using a for-loop % over the training examples if you are implementing it for the % first time. % % Part 3: Implement regularization with the cost function and gradients. % % Hint: You can implement this around the code for % backpropagation. That is, you can compute the gradients for % the regularization separately and then add them to Theta1_grad % and Theta2_grad from Part 2. % % %X = [ones(size(X, 1), 1) X]; p = zeros(size(X, 1), 1); h1 = sigmoid([ones(m, 1) X] * Theta1'); h2 = sigmoid([ones(m, 1) h1] * Theta2'); tempy = zeros(m, num_labels); for k = 1:num_labels tempy(:, k) = (y == k); endfor K = num_labels; for i = 1:m % iterativ %for k = 1:K % temp_y = (y == k); % J += -temp_y(i) * log(h2(i,k)) - (1 - temp_y(i)) * log(1 - h2(i,k)); %endfor %vectorizat J += sum(-tempy(i, :) * log(h2(i, :)') - (1 - tempy(i, :)) * log(1 - h2(i, :)')); endfor J = J/m; %vectorizat J += lambda/(2*m) * (sum(sum(Theta1(:, 2:end) .* Theta1(:, 2:end)), 2) + sum(sum(Theta2(:, 2:end) .* Theta2(:, 2:end)), 2)); JCost = 0; %for j = 1:25 % iterativ %for k = 2:401 %JCost += Theta1(j,k)*Theta1(j,k); %endfor %vectorized % JCost += sum(Theta1(j, 2:end) .* Theta1(j, 2:end)); %endfor %for j = 1:10 %iterativ %for k = 2:26 %JCost += Theta2(j,k)*Theta2(j,k); %endfor %vectorized % JCost += sum(Theta2(j, 2:end) .* Theta2(j, 2:end)); %endfor % ------------------------------------------------------------- Delta_1 = zeros(size(Theta1)); Delta_2 = zeros(size(Theta2)); for t = 1:m % Pasul 1 a_1 = [1 ; X(t, :)']; z_2 = Theta1 * a_1; a_2 = [1 ; sigmoid(z_2)]; z_3 = Theta2 * a_2; a_3 = sigmoid(z_3); % Pasul 2 delta_3 = zeros(num_labels, 1); for k = 1:num_labels delta_3(k) = a_3(k) - (y == k)(t); endfor % Pasul 3 delta_2 = (Theta2)' * delta_3 .* sigmoidGradient([1; z_2]); delta_2 = delta_2(2:end); Delta_1 = Delta_1 + delta_2 * (a_1'); Delta_2 = Delta_2 + delta_3 * (a_2'); endfor % ========================================================================= Theta1_grad(:, 1) = Delta_1(:, 1) ./ m; Theta2_grad(:, 1) = Delta_2(:, 1) ./ m; Theta1_grad(:, 2:end) = Delta_1(:, 2:end) ./ m + lambda/m .* Theta1(:, 2:end); Theta2_grad(:, 2:end) = Delta_2(:, 2:end) ./ m + lambda/m .* Theta2(:, 2:end); % Unroll gradients grad = [Theta1_grad(:) ; Theta2_grad(:)]; end