function [J, grad] = linearRegCostFunction(X, y, theta, lambda) %LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear %regression with multiple variables % [J, grad] = LINEARREGCOSTFUNCTION(X, y, theta, lambda) computes the % cost of using theta as the parameter for linear regression to fit the % data points in X and y. Returns the cost in J and the gradient in grad % Initialize some useful values m = length(y); % number of training examples % You need to return the following variables correctly J = 0; grad = zeros(size(theta)); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the cost and gradient of regularized linear % regression for a particular choice of theta. % % You should set J to the cost and grad to the gradient. % h = X*theta; J = sum (((h-y).^2))/(2*m)+ lambda * (sum(theta.^2)-theta(1,1)^2)/(2*m); grad = X'*(h-y)/m; thetaT = theta; thetaT(1,1)=0; grad =grad + (lambda*thetaT)/m ; % ========================================================================= grad = grad(:); end