29 04 13 18 15 00 7.667 29 04 13 18 30 00 7.000 29 04 13 18 45 00 7.000 29 04 13 19 00 00 7.333 29 04 13 19 15 00 7.000 import pandas as pd from cStringIO import StringIO def parse_all_fields(day_col, month_col, year_col, hour_col, minute_col,second_col): day_col = _maybe_cast(day_col) month_col = _maybe_cast(month_col) year_col = _maybe_cast(year_col) hour_col = _maybe_cast(hour_col) minute_col = _maybe_cast(minute_col) second_col = _maybe_cast(second_col) return lib.try_parse_datetime_components(day_col, month_col, year_col, hour_col, minute_col, second_col) ##Read the .txt file data1 = pd.read_table('0132_3.TXT', sep='s+', names=['Day','Month','Year','Hour','Min','Sec','Value']) data1[:10] Out[21]: Day,Month,Year,Hour, Min, Sec, Value 29 04 13 18 15 00 7.667 29 04 13 18 30 00 7.000 29 04 13 18 45 00 7.000 29 04 13 19 00 00 7.333 29 04 13 19 15 00 7.000 data2 = pd.read_table(StringIO(data1), parse_dates={'datetime':['Day','Month','Year','Hour''Min','Sec']}, date_parser=parse_all_fields, dayfirst=True) TypeError Traceback (most recent call last) in () ----> 1 data2 = pd.read_table(StringIO(data1), parse_dates={'datetime': ['Day','Month','Year','Hour''Min','Sec']}, date_parser=parse_all_fields, dayfirst=True) TypeError: expected read buffer, DataFrame found In [1]: df = pd.read_csv('0132_3.TXT', header=None, sep='s+s', parse_dates=[[0]]) In [2]: df Out[2]: 0 1 0 2013-04-29 00:00:00 7.667 1 2013-04-29 00:00:00 7.000 2 2013-04-29 00:00:00 7.000 3 2013-04-29 00:00:00 7.333 4 2013-04-29 00:00:00 7.000 In [11]: def date_parser(ss): day, month, year, hour, min, sec = ss.split() return pd.Timestamp('20%s-%s-%s %s:%s:%s' % (year, month, day, hour, min, sec)) In [12]: df = pd.read_csv('0132_3.TXT', header=None, sep='s+s', parse_dates=[[0]], date_parser=date_parser) In [13]: df Out[13]: 0 1 0 2013-04-29 18:15:00 7.667 1 2013-04-29 18:30:00 7.000 2 2013-04-29 18:45:00 7.000 3 2013-04-29 19:00:00 7.333 4 2013-04-29 19:15:00 7.000