####################################################################################### Chapter 2 key info ## [--Z Score--]: Value - Mean / Standard deviation. ## [--Density Curve--]: Overall pattern of the distribution, Total area sums to one. ## [--Sigma--]: σ “sigma” is the standard deviation of the density curve. ## [--Mu--]: μ “mu” is the mean of the density curve. ## [--Normal Distribution--]: Symmetric, unimodal, and bell shaped 1SD 68%, 2SD 95%, ## 3SD 99.7%. ##################################################################################### ##################################################################################### ## Chapter 3 key info ## [--Response Variable--]: Measures the outcome or the study, also called the ## dependent variable or "y" ## [--Explanatory Variable--]: Helps explain or influence the changes in the response ## variable. Also refereed to independent variable or "X" ## [--Scatter Plot--]: A graph that displays the relationship between X and Y from a ## single individual. Label X and Y axis intervals need to be equal scale can be ## different. Key parts {Ex img:imagebin.ca/v/3LxEZ1lTRw24}. How to describe a ## scatter plot {there is a "strength", "direction", "form" relationship between ## "explanatory" and "responses"}. ## [--Correlation--]: A measure of direction and strength of a linear relationship ## between two quantitative variables written as "r" ## [--r--]: "r" is always a number between -1 and 1. A positive association if "r" ## is positive and negative association if "r" is negative. A perfect linear ## relationship if -1 or 1. ## [--Regression Line--]: A straight line that describes how a response variable ## "y" changes as an explanatory variable "x" changes. Requires specific explanatory ## and response variables. Can be used to make predictions. ## [--Least squares regression line--]: the line that makes the sum of the squared ## vertical distances of actual data points from the predicted line as small as ## as possible. Formula: [-- p̂ = a + bx --] A=y-intercept b=slope y-hat is the ## predicted y. on formula sheet its p̂ = b0 + (b1 X). ## [--Predicted--]: Determine a specific y value from a given x value. ## [--Extrapolation--]: A prediction make that is outside of the domain of the ## explanatory variable. ## [--Describe an association--]: imagebin.ca/v/3LxRMgZrkFjp ## [--Fit of regression line--]: r=correlation measures strength and direction, ## residual=(observed value of y - predicted value of y) residual plot: a scatter ## plot of the explanatory variables and the residuals, R^2 percent of the variation ## in y can be attributed to the least squares linear relationship between x and y. ## [--Residual model--]: {Ex img: imagebin.ca/v/3LxTZRAe7xwO} ##################################################################################### ##################################################################################### ## Chapter 4 key info ## [--Causation--]: {Ex img: imagebin.ca/v/3LxWisyfKcaQ} ## {Ex img: imagebin.ca/v/3LxXKfElttz4} ## [--Linear Growth--]: Increase by a fixed amount in each equal time period ## form: y=a +bx. ## [--Exponential Growth--]: Increased by a fixed percent of the previous total ## form: Y=ab^x ## [--Power Model--]: Increases by a constant power form: Y=ax^b ## #####################################################################################