simpleflow.cpp


SUBMITTED BY: antfuentes87

DATE: Nov. 25, 2015, 12:49 a.m.

FORMAT: Text only

SIZE: 27.5 kB

HITS: 895

  1. /*M///////////////////////////////////////////////////////////////////////////////////////
  2. //
  3. // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
  4. //
  5. // By downloading, copying, installing or using the software you agree to this license.
  6. // If you do not agree to this license, do not download, install,
  7. // copy or use the software.
  8. //
  9. //
  10. // License Agreement
  11. // For Open Source Computer Vision Library
  12. //
  13. // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
  14. // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
  15. // Third party copyrights are property of their respective owners.
  16. //
  17. // Redistribution and use in source and binary forms, with or without modification,
  18. // are permitted provided that the following conditions are met:
  19. //
  20. // * Redistribution's of source code must retain the above copyright notice,
  21. // this list of conditions and the following disclaimer.
  22. //
  23. // * Redistribution's in binary form must reproduce the above copyright notice,
  24. // this list of conditions and the following disclaimer in the documentation
  25. // and/or other materials provided with the distribution.
  26. //
  27. // * The name of the copyright holders may not be used to endorse or promote products
  28. // derived from this software without specific prior written permission.
  29. //
  30. // This software is provided by the copyright holders and contributors "as is" and
  31. // any express or implied warranties, including, but not limited to, the implied
  32. // warranties of merchantability and fitness for a particular purpose are disclaimed.
  33. // In no event shall the Intel Corporation or contributors be liable for any direct,
  34. // indirect, incidental, special, exemplary, or consequential damages
  35. // (including, but not limited to, procurement of substitute goods or services;
  36. // loss of use, data, or profits; or business interruption) however caused
  37. // and on any theory of liability, whether in contract, strict liability,
  38. // or tort (including negligence or otherwise) arising in any way out of
  39. // the use of this software, even if advised of the possibility of such damage.
  40. //
  41. //M*/
  42. #include "precomp.hpp"
  43. //
  44. // 2D dense optical flow algorithm from the following paper:
  45. // Michael Tao, Jiamin Bai, Pushmeet Kohli, and Sylvain Paris.
  46. // "SimpleFlow: A Non-iterative, Sublinear Optical Flow Algorithm"
  47. // Computer Graphics Forum (Eurographics 2012)
  48. // http://graphics.berkeley.edu/papers/Tao-SAN-2012-05/
  49. //
  50. namespace cv
  51. {
  52. namespace optflow
  53. {
  54. static const uchar MASK_TRUE_VALUE = (uchar)255;
  55. inline static float dist(const Vec3b& p1, const Vec3b& p2) {
  56. return (float)((p1[0] - p2[0]) * (p1[0] - p2[0]) +
  57. (p1[1] - p2[1]) * (p1[1] - p2[1]) +
  58. (p1[2] - p2[2]) * (p1[2] - p2[2]));
  59. }
  60. inline static float dist(const Vec2f& p1, const Vec2f& p2) {
  61. return (p1[0] - p2[0]) * (p1[0] - p2[0]) +
  62. (p1[1] - p2[1]) * (p1[1] - p2[1]);
  63. }
  64. template<class T>
  65. inline static T min(T t1, T t2, T t3) {
  66. return (t1 <= t2 && t1 <= t3) ? t1 : min(t2, t3);
  67. }
  68. static void removeOcclusions(const Mat& flow,
  69. const Mat& flow_inv,
  70. float occ_thr,
  71. Mat& confidence) {
  72. const int rows = flow.rows;
  73. const int cols = flow.cols;
  74. if (!confidence.data) {
  75. confidence = Mat::zeros(rows, cols, CV_32F);
  76. }
  77. for (int r = 0; r < rows; ++r) {
  78. for (int c = 0; c < cols; ++c) {
  79. if (dist(flow.at<Vec2f>(r, c), -flow_inv.at<Vec2f>(r, c)) > occ_thr) {
  80. confidence.at<float>(r, c) = 0;
  81. } else {
  82. confidence.at<float>(r, c) = 1;
  83. }
  84. }
  85. }
  86. }
  87. static void wd(Mat& d, int top_shift, int bottom_shift, int left_shift, int right_shift, float sigma) {
  88. for (int dr = -top_shift, r = 0; dr <= bottom_shift; ++dr, ++r) {
  89. for (int dc = -left_shift, c = 0; dc <= right_shift; ++dc, ++c) {
  90. d.at<float>(r, c) = (float)-(dr*dr + dc*dc);
  91. }
  92. }
  93. d *= 1.0 / (2.0 * sigma * sigma);
  94. exp(d, d);
  95. }
  96. static void wc(const Mat& image, Mat& d, int r0, int c0,
  97. int top_shift, int bottom_shift, int left_shift, int right_shift, float sigma) {
  98. const Vec3b centeral_point = image.at<Vec3b>(r0, c0);
  99. int left_border = c0-left_shift, right_border = c0+right_shift;
  100. for (int dr = r0-top_shift, r = 0; dr <= r0+bottom_shift; ++dr, ++r) {
  101. const Vec3b *row = image.ptr<Vec3b>(dr);
  102. float *d_row = d.ptr<float>(r);
  103. for (int dc = left_border, c = 0; dc <= right_border; ++dc, ++c) {
  104. d_row[c] = -dist(centeral_point, row[dc]);
  105. }
  106. }
  107. d *= 1.0 / (2.0 * sigma * sigma);
  108. exp(d, d);
  109. }
  110. static void crossBilateralFilter(const Mat& image,
  111. const Mat& edge_image,
  112. const Mat confidence,
  113. Mat& dst, int d,
  114. float sigma_color, float sigma_space,
  115. bool flag=false) {
  116. const int rows = image.rows;
  117. const int cols = image.cols;
  118. Mat image_extended, edge_image_extended, confidence_extended;
  119. copyMakeBorder(image, image_extended, d, d, d, d, BORDER_DEFAULT);
  120. copyMakeBorder(edge_image, edge_image_extended, d, d, d, d, BORDER_DEFAULT);
  121. copyMakeBorder(confidence, confidence_extended, d, d, d, d, BORDER_CONSTANT, Scalar(0));
  122. Mat weights_space(2*d+1, 2*d+1, CV_32F);
  123. wd(weights_space, d, d, d, d, sigma_space);
  124. Mat weights(2*d+1, 2*d+1, CV_32F);
  125. Mat weighted_sum(2*d+1, 2*d+1, CV_32F);
  126. std::vector<Mat> image_extended_channels;
  127. split(image_extended, image_extended_channels);
  128. for (int row = 0; row < rows; ++row) {
  129. for (int col = 0; col < cols; ++col) {
  130. wc(edge_image_extended, weights, row+d, col+d, d, d, d, d, sigma_color);
  131. Range window_rows(row,row+2*d+1);
  132. Range window_cols(col,col+2*d+1);
  133. multiply(weights, confidence_extended(window_rows, window_cols), weights);
  134. multiply(weights, weights_space, weights);
  135. float weights_sum = (float)sum(weights)[0];
  136. for (int ch = 0; ch < 2; ++ch) {
  137. multiply(weights, image_extended_channels[ch](window_rows, window_cols), weighted_sum);
  138. float total_sum = (float)sum(weighted_sum)[0];
  139. dst.at<Vec2f>(row, col)[ch] = (flag && fabs(weights_sum) < 1e-9)
  140. ? image.at<float>(row, col)
  141. : total_sum / weights_sum;
  142. }
  143. }
  144. }
  145. }
  146. static void calcConfidence(const Mat& prev,
  147. const Mat& next,
  148. const Mat& flow,
  149. Mat& confidence,
  150. int max_flow) {
  151. const int rows = prev.rows;
  152. const int cols = prev.cols;
  153. confidence = Mat::zeros(rows, cols, CV_32F);
  154. for (int r0 = 0; r0 < rows; ++r0) {
  155. for (int c0 = 0; c0 < cols; ++c0) {
  156. Vec2f flow_at_point = flow.at<Vec2f>(r0, c0);
  157. int u0 = cvRound(flow_at_point[0]);
  158. if (r0 + u0 < 0) { u0 = -r0; }
  159. if (r0 + u0 >= rows) { u0 = rows - 1 - r0; }
  160. int v0 = cvRound(flow_at_point[1]);
  161. if (c0 + v0 < 0) { v0 = -c0; }
  162. if (c0 + v0 >= cols) { v0 = cols - 1 - c0; }
  163. const int top_row_shift = -std::min(r0 + u0, max_flow);
  164. const int bottom_row_shift = std::min(rows - 1 - (r0 + u0), max_flow);
  165. const int left_col_shift = -std::min(c0 + v0, max_flow);
  166. const int right_col_shift = std::min(cols - 1 - (c0 + v0), max_flow);
  167. bool first_flow_iteration = true;
  168. float sum_e = 0, min_e = 0;
  169. for (int u = top_row_shift; u <= bottom_row_shift; ++u) {
  170. for (int v = left_col_shift; v <= right_col_shift; ++v) {
  171. float e = dist(prev.at<Vec3b>(r0, c0), next.at<Vec3b>(r0 + u0 + u, c0 + v0 + v));
  172. if (first_flow_iteration) {
  173. sum_e = e;
  174. min_e = e;
  175. first_flow_iteration = false;
  176. } else {
  177. sum_e += e;
  178. min_e = std::min(min_e, e);
  179. }
  180. }
  181. }
  182. int windows_square = (bottom_row_shift - top_row_shift + 1) *
  183. (right_col_shift - left_col_shift + 1);
  184. confidence.at<float>(r0, c0) = (windows_square == 0) ? 0
  185. : sum_e / windows_square - min_e;
  186. CV_Assert(confidence.at<float>(r0, c0) >= 0);
  187. }
  188. }
  189. }
  190. static void calcOpticalFlowSingleScaleSF(const Mat& prev_extended,
  191. const Mat& next_extended,
  192. const Mat& mask,
  193. Mat& flow,
  194. int averaging_radius,
  195. int max_flow,
  196. float sigma_dist,
  197. float sigma_color) {
  198. const int averaging_radius_2 = averaging_radius << 1;
  199. const int rows = prev_extended.rows - averaging_radius_2;
  200. const int cols = prev_extended.cols - averaging_radius_2;
  201. Mat weight_window(averaging_radius_2 + 1, averaging_radius_2 + 1, CV_32F);
  202. Mat space_weight_window(averaging_radius_2 + 1, averaging_radius_2 + 1, CV_32F);
  203. wd(space_weight_window, averaging_radius, averaging_radius, averaging_radius, averaging_radius, sigma_dist);
  204. for (int r0 = 0; r0 < rows; ++r0) {
  205. for (int c0 = 0; c0 < cols; ++c0) {
  206. if (!mask.at<uchar>(r0, c0)) {
  207. continue;
  208. }
  209. // TODO: do smth with this creepy staff
  210. Vec2f flow_at_point = flow.at<Vec2f>(r0, c0);
  211. int u0 = cvRound(flow_at_point[0]);
  212. if (r0 + u0 < 0) { u0 = -r0; }
  213. if (r0 + u0 >= rows) { u0 = rows - 1 - r0; }
  214. int v0 = cvRound(flow_at_point[1]);
  215. if (c0 + v0 < 0) { v0 = -c0; }
  216. if (c0 + v0 >= cols) { v0 = cols - 1 - c0; }
  217. const int top_row_shift = -std::min(r0 + u0, max_flow);
  218. const int bottom_row_shift = std::min(rows - 1 - (r0 + u0), max_flow);
  219. const int left_col_shift = -std::min(c0 + v0, max_flow);
  220. const int right_col_shift = std::min(cols - 1 - (c0 + v0), max_flow);
  221. float min_cost = FLT_MAX, best_u = (float)u0, best_v = (float)v0;
  222. wc(prev_extended, weight_window, r0 + averaging_radius, c0 + averaging_radius,
  223. averaging_radius, averaging_radius, averaging_radius, averaging_radius, sigma_color);
  224. multiply(weight_window, space_weight_window, weight_window);
  225. const int prev_extended_top_window_row = r0;
  226. const int prev_extended_left_window_col = c0;
  227. for (int u = top_row_shift; u <= bottom_row_shift; ++u) {
  228. const int next_extended_top_window_row = r0 + u0 + u;
  229. for (int v = left_col_shift; v <= right_col_shift; ++v) {
  230. const int next_extended_left_window_col = c0 + v0 + v;
  231. float cost = 0;
  232. for (int r = 0; r <= averaging_radius_2; ++r) {
  233. const Vec3b *prev_extended_window_row = prev_extended.ptr<Vec3b>(prev_extended_top_window_row + r);
  234. const Vec3b *next_extended_window_row = next_extended.ptr<Vec3b>(next_extended_top_window_row + r);
  235. const float* weight_window_row = weight_window.ptr<float>(r);
  236. for (int c = 0; c <= averaging_radius_2; ++c) {
  237. cost += weight_window_row[c] *
  238. dist(prev_extended_window_row[prev_extended_left_window_col + c],
  239. next_extended_window_row[next_extended_left_window_col + c]);
  240. }
  241. }
  242. // cost should be divided by sum(weight_window), but because
  243. // we interested only in min(cost) and sum(weight_window) is constant
  244. // for every point - we remove it
  245. if (cost < min_cost) {
  246. min_cost = cost;
  247. best_u = (float)(u + u0);
  248. best_v = (float)(v + v0);
  249. }
  250. }
  251. }
  252. flow.at<Vec2f>(r0, c0) = Vec2f(best_u, best_v);
  253. }
  254. }
  255. }
  256. static Mat upscaleOpticalFlow(int new_rows,
  257. int new_cols,
  258. const Mat& image,
  259. const Mat& confidence,
  260. Mat& flow,
  261. int averaging_radius,
  262. float sigma_dist,
  263. float sigma_color) {
  264. crossBilateralFilter(flow, image, confidence, flow, averaging_radius, sigma_color, sigma_dist, true);
  265. Mat new_flow;
  266. resize(flow, new_flow, Size(new_cols, new_rows), 0, 0, INTER_NEAREST);
  267. new_flow *= 2;
  268. return new_flow;
  269. }
  270. static Mat calcIrregularityMat(const Mat& flow, int radius) {
  271. const int rows = flow.rows;
  272. const int cols = flow.cols;
  273. Mat irregularity = Mat::zeros(rows, cols, CV_32F);
  274. for (int r = 0; r < rows; ++r) {
  275. const int start_row = std::max(0, r - radius);
  276. const int end_row = std::min(rows - 1, r + radius);
  277. for (int c = 0; c < cols; ++c) {
  278. const int start_col = std::max(0, c - radius);
  279. const int end_col = std::min(cols - 1, c + radius);
  280. for (int dr = start_row; dr <= end_row; ++dr) {
  281. for (int dc = start_col; dc <= end_col; ++dc) {
  282. const float diff = dist(flow.at<Vec2f>(r, c), flow.at<Vec2f>(dr, dc));
  283. if (diff > irregularity.at<float>(r, c)) {
  284. irregularity.at<float>(r, c) = diff;
  285. }
  286. }
  287. }
  288. }
  289. }
  290. return irregularity;
  291. }
  292. static void selectPointsToRecalcFlow(const Mat& flow,
  293. int irregularity_metric_radius,
  294. float speed_up_thr,
  295. int curr_rows,
  296. int curr_cols,
  297. const Mat& prev_speed_up,
  298. Mat& speed_up,
  299. Mat& mask) {
  300. const int prev_rows = flow.rows;
  301. const int prev_cols = flow.cols;
  302. Mat is_flow_regular = calcIrregularityMat(flow, irregularity_metric_radius)
  303. < speed_up_thr;
  304. Mat done = Mat::zeros(prev_rows, prev_cols, CV_8U);
  305. speed_up = Mat::zeros(curr_rows, curr_cols, CV_8U);
  306. mask = Mat::zeros(curr_rows, curr_cols, CV_8U);
  307. for (int r = 0; r < is_flow_regular.rows; ++r) {
  308. for (int c = 0; c < is_flow_regular.cols; ++c) {
  309. if (!done.at<uchar>(r, c)) {
  310. if (is_flow_regular.at<uchar>(r, c) &&
  311. 2*r + 1 < curr_rows && 2*c + 1< curr_cols) {
  312. bool all_flow_in_region_regular = true;
  313. int speed_up_at_this_point = prev_speed_up.at<uchar>(r, c);
  314. int step = (1 << speed_up_at_this_point) - 1;
  315. int prev_top = r;
  316. int prev_bottom = std::min(r + step, prev_rows - 1);
  317. int prev_left = c;
  318. int prev_right = std::min(c + step, prev_cols - 1);
  319. for (int rr = prev_top; rr <= prev_bottom; ++rr) {
  320. for (int cc = prev_left; cc <= prev_right; ++cc) {
  321. done.at<uchar>(rr, cc) = 1;
  322. if (!is_flow_regular.at<uchar>(rr, cc)) {
  323. all_flow_in_region_regular = false;
  324. }
  325. }
  326. }
  327. int curr_top = std::min(2 * r, curr_rows - 1);
  328. int curr_bottom = std::min(2*(r + step) + 1, curr_rows - 1);
  329. int curr_left = std::min(2 * c, curr_cols - 1);
  330. int curr_right = std::min(2*(c + step) + 1, curr_cols - 1);
  331. if (all_flow_in_region_regular &&
  332. curr_top != curr_bottom &&
  333. curr_left != curr_right) {
  334. mask.at<uchar>(curr_top, curr_left) = MASK_TRUE_VALUE;
  335. mask.at<uchar>(curr_bottom, curr_left) = MASK_TRUE_VALUE;
  336. mask.at<uchar>(curr_top, curr_right) = MASK_TRUE_VALUE;
  337. mask.at<uchar>(curr_bottom, curr_right) = MASK_TRUE_VALUE;
  338. for (int rr = curr_top; rr <= curr_bottom; ++rr) {
  339. for (int cc = curr_left; cc <= curr_right; ++cc) {
  340. speed_up.at<uchar>(rr, cc) = (uchar)(speed_up_at_this_point + 1);
  341. }
  342. }
  343. } else {
  344. for (int rr = curr_top; rr <= curr_bottom; ++rr) {
  345. for (int cc = curr_left; cc <= curr_right; ++cc) {
  346. mask.at<uchar>(rr, cc) = MASK_TRUE_VALUE;
  347. }
  348. }
  349. }
  350. } else {
  351. done.at<uchar>(r, c) = 1;
  352. for (int dr = 0; dr <= 1; ++dr) {
  353. int nr = 2*r + dr;
  354. for (int dc = 0; dc <= 1; ++dc) {
  355. int nc = 2*c + dc;
  356. if (nr < curr_rows && nc < curr_cols) {
  357. mask.at<uchar>(nr, nc) = MASK_TRUE_VALUE;
  358. }
  359. }
  360. }
  361. }
  362. }
  363. }
  364. }
  365. }
  366. static inline float extrapolateValueInRect(int height, int width,
  367. float v11, float v12,
  368. float v21, float v22,
  369. int r, int c) {
  370. if (r == 0 && c == 0) { return v11;}
  371. if (r == 0 && c == width) { return v12;}
  372. if (r == height && c == 0) { return v21;}
  373. if (r == height && c == width) { return v22;}
  374. CV_Assert(height > 0 && width > 0);
  375. float qr = float(r) / height;
  376. float pr = 1.0f - qr;
  377. float qc = float(c) / width;
  378. float pc = 1.0f - qc;
  379. return v11*pr*pc + v12*pr*qc + v21*qr*pc + v22*qc*qr;
  380. }
  381. static void extrapolateFlow(Mat& flow,
  382. const Mat& speed_up) {
  383. const int rows = flow.rows;
  384. const int cols = flow.cols;
  385. Mat done = Mat::zeros(rows, cols, CV_8U);
  386. for (int r = 0; r < rows; ++r) {
  387. for (int c = 0; c < cols; ++c) {
  388. if (!done.at<uchar>(r, c) && speed_up.at<uchar>(r, c) > 1) {
  389. int step = (1 << speed_up.at<uchar>(r, c)) - 1;
  390. int top = r;
  391. int bottom = std::min(r + step, rows - 1);
  392. int left = c;
  393. int right = std::min(c + step, cols - 1);
  394. int height = bottom - top;
  395. int width = right - left;
  396. for (int rr = top; rr <= bottom; ++rr) {
  397. for (int cc = left; cc <= right; ++cc) {
  398. done.at<uchar>(rr, cc) = 1;
  399. Vec2f flow_at_point;
  400. Vec2f top_left = flow.at<Vec2f>(top, left);
  401. Vec2f top_right = flow.at<Vec2f>(top, right);
  402. Vec2f bottom_left = flow.at<Vec2f>(bottom, left);
  403. Vec2f bottom_right = flow.at<Vec2f>(bottom, right);
  404. flow_at_point[0] = extrapolateValueInRect(height, width,
  405. top_left[0], top_right[0],
  406. bottom_left[0], bottom_right[0],
  407. rr-top, cc-left);
  408. flow_at_point[1] = extrapolateValueInRect(height, width,
  409. top_left[1], top_right[1],
  410. bottom_left[1], bottom_right[1],
  411. rr-top, cc-left);
  412. flow.at<Vec2f>(rr, cc) = flow_at_point;
  413. }
  414. }
  415. }
  416. }
  417. }
  418. }
  419. static void buildPyramidWithResizeMethod(const Mat& src,
  420. std::vector<Mat>& pyramid,
  421. int layers,
  422. int interpolation_type) {
  423. pyramid.push_back(src);
  424. for (int i = 1; i <= layers; ++i) {
  425. Mat prev = pyramid[i - 1];
  426. if (prev.rows <= 1 || prev.cols <= 1) {
  427. break;
  428. }
  429. Mat next;
  430. resize(prev, next, Size((prev.cols + 1) / 2, (prev.rows + 1) / 2), 0, 0, interpolation_type);
  431. pyramid.push_back(next);
  432. }
  433. }
  434. CV_EXPORTS_W void calcOpticalFlowSF(InputArray _from,
  435. InputArray _to,
  436. OutputArray _resulted_flow,
  437. int layers,
  438. int averaging_radius,
  439. int max_flow,
  440. double sigma_dist,
  441. double sigma_color,
  442. int postprocess_window,
  443. double sigma_dist_fix,
  444. double sigma_color_fix,
  445. double occ_thr,
  446. int upscale_averaging_radius,
  447. double upscale_sigma_dist,
  448. double upscale_sigma_color,
  449. double speed_up_thr)
  450. {
  451. Mat from = _from.getMat();
  452. Mat to = _to.getMat();
  453. std::vector<Mat> pyr_from_images;
  454. std::vector<Mat> pyr_to_images;
  455. buildPyramidWithResizeMethod(from, pyr_from_images, layers - 1, INTER_CUBIC);
  456. buildPyramidWithResizeMethod(to, pyr_to_images, layers - 1, INTER_CUBIC);
  457. CV_Assert((int)pyr_from_images.size() == layers && (int)pyr_to_images.size() == layers);
  458. Mat curr_from, curr_to, prev_from, prev_to;
  459. Mat curr_from_extended, curr_to_extended;
  460. curr_from = pyr_from_images[layers - 1];
  461. curr_to = pyr_to_images[layers - 1];
  462. copyMakeBorder(curr_from, curr_from_extended,
  463. averaging_radius, averaging_radius, averaging_radius, averaging_radius,
  464. BORDER_DEFAULT);
  465. copyMakeBorder(curr_to, curr_to_extended,
  466. averaging_radius, averaging_radius, averaging_radius, averaging_radius,
  467. BORDER_DEFAULT);
  468. Mat mask = Mat::ones(curr_from.size(), CV_8U);
  469. Mat mask_inv = Mat::ones(curr_from.size(), CV_8U);
  470. Mat flow = Mat::zeros(curr_from.size(), CV_32FC2);
  471. Mat flow_inv = Mat::zeros(curr_to.size(), CV_32FC2);
  472. Mat confidence;
  473. Mat confidence_inv;
  474. calcOpticalFlowSingleScaleSF(curr_from_extended,
  475. curr_to_extended,
  476. mask,
  477. flow,
  478. averaging_radius,
  479. max_flow,
  480. (float)sigma_dist,
  481. (float)sigma_color);
  482. calcOpticalFlowSingleScaleSF(curr_to_extended,
  483. curr_from_extended,
  484. mask_inv,
  485. flow_inv,
  486. averaging_radius,
  487. max_flow,
  488. (float)sigma_dist,
  489. (float)sigma_color);
  490. removeOcclusions(flow,
  491. flow_inv,
  492. (float)occ_thr,
  493. confidence);
  494. removeOcclusions(flow_inv,
  495. flow,
  496. (float)occ_thr,
  497. confidence_inv);
  498. Mat speed_up = Mat::zeros(curr_from.size(), CV_8U);
  499. Mat speed_up_inv = Mat::zeros(curr_from.size(), CV_8U);
  500. for (int curr_layer = layers - 2; curr_layer >= 0; --curr_layer) {
  501. curr_from = pyr_from_images[curr_layer];
  502. curr_to = pyr_to_images[curr_layer];
  503. prev_from = pyr_from_images[curr_layer + 1];
  504. prev_to = pyr_to_images[curr_layer + 1];
  505. copyMakeBorder(curr_from, curr_from_extended,
  506. averaging_radius, averaging_radius, averaging_radius, averaging_radius,
  507. BORDER_DEFAULT);
  508. copyMakeBorder(curr_to, curr_to_extended,
  509. averaging_radius, averaging_radius, averaging_radius, averaging_radius,
  510. BORDER_DEFAULT);
  511. const int curr_rows = curr_from.rows;
  512. const int curr_cols = curr_from.cols;
  513. Mat new_speed_up, new_speed_up_inv;
  514. selectPointsToRecalcFlow(flow,
  515. averaging_radius,
  516. (float)speed_up_thr,
  517. curr_rows,
  518. curr_cols,
  519. speed_up,
  520. new_speed_up,
  521. mask);
  522. selectPointsToRecalcFlow(flow_inv,
  523. averaging_radius,
  524. (float)speed_up_thr,
  525. curr_rows,
  526. curr_cols,
  527. speed_up_inv,
  528. new_speed_up_inv,
  529. mask_inv);
  530. speed_up = new_speed_up;
  531. speed_up_inv = new_speed_up_inv;
  532. flow = upscaleOpticalFlow(curr_rows,
  533. curr_cols,
  534. prev_from,
  535. confidence,
  536. flow,
  537. upscale_averaging_radius,
  538. (float)upscale_sigma_dist,
  539. (float)upscale_sigma_color);
  540. flow_inv = upscaleOpticalFlow(curr_rows,
  541. curr_cols,
  542. prev_to,
  543. confidence_inv,
  544. flow_inv,
  545. upscale_averaging_radius,
  546. (float)upscale_sigma_dist,
  547. (float)upscale_sigma_color);
  548. calcConfidence(curr_from, curr_to, flow, confidence, max_flow);
  549. calcOpticalFlowSingleScaleSF(curr_from_extended,
  550. curr_to_extended,
  551. mask,
  552. flow,
  553. averaging_radius,
  554. max_flow,
  555. (float)sigma_dist,
  556. (float)sigma_color);
  557. calcConfidence(curr_to, curr_from, flow_inv, confidence_inv, max_flow);
  558. calcOpticalFlowSingleScaleSF(curr_to_extended,
  559. curr_from_extended,
  560. mask_inv,
  561. flow_inv,
  562. averaging_radius,
  563. max_flow,
  564. (float)sigma_dist,
  565. (float)sigma_color);
  566. extrapolateFlow(flow, speed_up);
  567. extrapolateFlow(flow_inv, speed_up_inv);
  568. //TODO: should we remove occlusions for the last stage?
  569. removeOcclusions(flow, flow_inv, (float)occ_thr, confidence);
  570. removeOcclusions(flow_inv, flow, (float)occ_thr, confidence_inv);
  571. }
  572. crossBilateralFilter(flow, curr_from, confidence, flow,
  573. postprocess_window, (float)sigma_color_fix, (float)sigma_dist_fix);
  574. GaussianBlur(flow, flow, Size(3, 3), 5);
  575. _resulted_flow.create(flow.size(), CV_32FC2);
  576. Mat resulted_flow = _resulted_flow.getMat();
  577. int from_to[] = {0,1 , 1,0};
  578. mixChannels(&flow, 1, &resulted_flow, 1, from_to, 2);
  579. }
  580. CV_EXPORTS_W void calcOpticalFlowSF(InputArray from,
  581. InputArray to,
  582. OutputArray flow,
  583. int layers,
  584. int averaging_block_size,
  585. int max_flow) {
  586. calcOpticalFlowSF(from, to, flow, layers, averaging_block_size, max_flow,
  587. 4.1, 25.5, 18, 55.0, 25.5, 0.35, 18, 55.0, 25.5, 10);
  588. }
  589. }
  590. }

comments powered by Disqus