Untitled


SUBMITTED BY: Guest

DATE: Sept. 3, 2024, 7:09 a.m.

FORMAT: Bash

SIZE: 50.9 kB

HITS: 146

  1. ## Graphene: synthesis, bio-applications, and properties. Artificial cells, nanomedicine, and biotechnology
  2. [https://doi.org/10.3109/21691401.2014.927880](https://doi.org/10.3109/21691401.2014.927880)
  3. ---
  4. ## Terahertz channel characterization inside the human skin for nano-scale body-centric networks. IEEE Transactions on Terahertz Science and Technology
  5. [https://doi.org/10.1109/TTHZ.2016.2542213](https://doi.org/10.1109/TTHZ.2016.2542213)
  6. ---
  7. ## Cooperative in-vivo nano-network communication at terahertz frequencies. IEEE Access
  8. [https://doi.org/10.1109/ACCESS.2017.2677498](https://doi.org/10.1109/ACCESS.2017.2677498)
  9. ---
  10. ## Engineering molecular communications integrated with carbon nanotubes in neural sensor nanonetworks. IET Nanobiotechnology
  11. [https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-nbt.2016.0150](https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-nbt.2016.0150)
  12. ---
  13. ## Propagation models for nanocommunication networks. Proceedings of the Fourth European Conference on Antennas and Propagation IEEE
  14. [https://ieeexplore.ieee.org/abstract/document/5505714](https://ieeexplore.ieee.org/abstract/document/5505714)
  15. ---
  16. ## Enhancement and performance analysis of channel access mechanisms in terahertz band. Nano Communication Networks
  17. [https://doi.org/10.1016/j.nancom.2021.100364](https://doi.org/10.1016/j.nancom.2021.100364)
  18. ---
  19. ## MAC protocols for wireless nano-sensor networks: Performance analysis and design guidelines. 2016 Sixth International Conference on Digital Information Processing and Communications (ICDIPC)
  20. [https://doi.org/10.1109/ICDIPC.2016.7470805](https://doi.org/10.1109/ICDIPC.2016.7470805)
  21. ---
  22. ## Routing protocols for wireless nanosensor networks and internet of nano things: a comprehensive survey. IEEE Access
  23. [https://doi.org/10.1109/ACCESS.2020.3035646](https://doi.org/10.1109/ACCESS.2020.3035646)
  24. ---
  25. ## Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects. Frontiers in neural circuits
  26. [https://doi.org/10.3389/fncir.2012.00122](https://doi.org/10.3389/fncir.2012.00122)
  27. ---
  28. ## The human skin as a sub-THz receiver–Does 5G pose a danger to it or not? Environmental research
  29. [https://doi.org/10.1016/j.envres.2018.01.032](https://doi.org/10.1016/j.envres.2018.01.032)
  30. ---
  31. ## Engineered self-organization of neural networks using carbon nanotube clusters. Physica A: Statistical Mechanics and its Applications
  32. [https://doi.org/10.1016/j.physa.2004.11.007](https://doi.org/10.1016/j.physa.2004.11.007)
  33. ---
  34. ## MAC protocols for terahertz communication: A comprehensive survey. IEEE Communications Surveys & Tutorials
  35. [https://doi.org/10.1109/COMST.2020.3017393](https://doi.org/10.1109/COMST.2020.3017393)
  36. ---
  37. ## Optoelectronic Neural Interfaces Based on Quantum Dots. ACS Applied Materials & Interfaces.
  38. [https://doi.org/10.1021/acsami.1c25009](https://doi.org/10.1021/acsami.1c25009)
  39. ---
  40. ## Advances in carbon-based microfiber electrodes for neural interfacing. Frontiers in Neuroscience
  41. [https://doi.org/10.3389/fnins.2021.658703](https://doi.org/10.3389/fnins.2021.658703)
  42. ---
  43. ## Multi-user interference modeling and experimental characterization for pulse-based terahertz communication. Proceedings of the 3rd ACM International Conference on Nanoscale Computing and Communication
  44. [https://doi.org/10.1145/2967446.2967462](https://doi.org/10.1145/2967446.2967462)
  45. ---
  46. ## MAC-oriented programmable terahertz PHY via graphene-based Yagi-Uda antennas. 2018 IEEE Wireless Communications and Networking Conference (WCNC) (pp. 1-6). IEEE.
  47. [https://doi.org/10.1109/WCNC.2018.8377201](https://doi.org/10.1109/WCNC.2018.8377201)
  48. ---
  49. ## From nano-communications to body area networks: A perspective on truly personal communications. IEEE Access
  50. [https://doi.org/10.1109/ACCESS.2020.3015825](https://doi.org/10.1109/ACCESS.2020.3015825)
  51. ---
  52. ## Asynchronous on demand MAC protocol using wake-up radio in wireless body area network. 2015 6th International Workshop on Advances in Sensors and Interfaces (IWASI). IEEE.
  53. [https://doi.org/10.1109/IWASI.2015.7184942](https://doi.org/10.1109/IWASI.2015.7184942)
  54. ---
  55. ## Survey on terahertz nanocommunication and networking: A top-down perspective. IEEE Journal on Selected Areas in Communications
  56. [https://doi.org/10.1109/JSAC.2021.3071837](https://doi.org/10.1109/JSAC.2021.3071837)
  57. ---
  58. ## Carbon nanotube substrates boost neuronal electrical signaling. Nano letters
  59. [https://doi.org/10.1021/nl050637m](https://doi.org/10.1021/nl050637m)
  60. ---
  61. ## Improving cardiac myocytes performance by carbon nanotubes platforms. Frontiers in physiology
  62. [https://doi.org/10.3389/fphys.2013.00239](https://doi.org/10.3389/fphys.2013.00239)
  63. ---
  64. ## Applications of carbon nanotubes in the biomedical field. Smart nanoparticles for biomedicine
  65. [https://doi.org/10.1016/B978-0-12-814156-4.00006-9](https://doi.org/10.1016/B978-0-12-814156-4.00006-9)
  66. ---
  67. ## Data Transmission Enhancement Using Optimal Coding Technique Over In Vivo Channel for Interbody Communication. Big Data.
  68. [https://doi.org/10.1089/big.2021.0224](https://doi.org/10.1089/big.2021.0224)
  69. ---
  70. ## Equation Invasion! How Math can Explain How the Brain Learns.
  71. [http://doi.org/10.3389/frym.2018.00065](http://doi.org/10.3389/frym.2018.00065)
  72. ---
  73. ## Controlled reduction of graphene oxide laminate and its applications for ultra-wideband microwave absorption
  74. [https://doi.org/10.1016/j.carbon.2019.12.062](https://doi.org/10.1016/j.carbon.2019.12.062)
  75. ---
  76. ## Terahertz electromagnetic field propagation in human tissues: A study on communication capabilities. Nano Communication Networks
  77. [https://doi.org/10.1016/j.nancom.2016.07.010](https://doi.org/10.1016/j.nancom.2016.07.010)
  78. ---
  79. ## Properties and behavior of carbon nanomaterials when interfacing neuronal cells: How far have we come?
  80. [https://doi.org/10.1016/j.carbon.2018.11.026](https://doi.org/10.1016/j.carbon.2018.11.026)
  81. ---
  82. ## Energy efficient wireless nano sensor network MAC protocol for communications in the terahertz band. Wireless Personal Communications
  83. [https://doi.org/10.1007/s11277-017-4517-4](https://doi.org/10.1007/s11277-017-4517-4)
  84. ---
  85. ## An energy efficient modulation scheme for body-centric nano-communications in the THz band. 2018 7th International Conference on Modern Circuits and Systems Technologies
  86. [https://doi.org/10.1109/MOCAST.2018.8376563](https://doi.org/10.1109/MOCAST.2018.8376563)
  87. ---
  88. ## A comprehensive survey on hybrid communication in context of molecular communication and terahertz communication for body-centric nanonetworks. IEEE Transactions on Molecular, Biological and Multi-Scale Communications.
  89. [https://doi.org/10.1109/TMBMC.2020.3017146](https://doi.org/10.1109/TMBMC.2020.3017146)
  90. ---
  91. ## Advanced Metallic and Polymeric Coatings for Neural Interfacing: Structures, Properties and Tissue Responses. Polymers
  92. [https://doi.org/10.3390/polym13162834](https://doi.org/10.3390/polym13162834)
  93. ---
  94. ## Tactile and thermal sensors built from carbon–polymer nanocomposites — A critical review.
  95. [https://doi.org/10.3390/s21041234](https://doi.org/10.3390/s21041234)
  96. ---
  97. ## Analytical characterisation of the terahertz in-vivo nano-network in the presence of interference based on TS-OOK communication scheme. IEEE Access.
  98. [https://doi.org/10.1109/ACCESS.2017.2713459](https://doi.org/10.1109/ACCESS.2017.2713459)
  99. ---
  100. ## Reduction of graphene oxide quantum dots to enhance the yield of reactive oxygen species for photodynamic therapy. Physical Chemistry Chemical Physics
  101. [https://doi.org/10.1039/C8CP01990H](https://doi.org/10.1039/C8CP01990H)
  102. ---
  103. ## Controlled information transfer through an in vivo nervous system. Scientific reports
  104. [https://doi.org/10.1038/s41598-018-20725-2](https://doi.org/10.1038/s41598-018-20725-2)
  105. ---
  106. ## Nano-communication for biomedical applications: A review on the state-of-the-art from physical layers to novel networking concepts. IEEE Access
  107. [https://doi.org/10.1109/ACCESS.2016.2593582](https://doi.org/10.1109/ACCESS.2016.2593582)
  108. ---
  109. ## Blood–brain barrier structure and function and the challenges for CNS drug delivery. Journal of inherited metabolic disease
  110. [https://doi.org/10.1007/s10545-013-9608-0](https://doi.org/10.1007/s10545-013-9608-0)
  111. ---
  112. ## Amplify-and-forward relaying in two-hop diffusion-based molecular communication networks. IEEE Global Communications Conference
  113. [https://doi.org/10.1109/GLOCOM.2015.7417069](https://doi.org/10.1109/GLOCOM.2015.7417069)
  114. ---
  115. ## Analysis and design of multi-hop diffusion-based molecular communication networks. IEEE Transactions on Molecular, Biological and Multi-Scale Communications
  116. [https://doi.org/10.1109/TMBMC.2015.2501741](https://doi.org/10.1109/TMBMC.2015.2501741)
  117. ---
  118. ## Electromagnetic wireless nanosensor networks. Nano Communication Networks
  119. [https://doi.org/10.1016/j.nancom.2010.04.001](https://doi.org/10.1016/j.nancom.2010.04.001)
  120. ---
  121. ## Nanonetworks: A new frontier in communications
  122. [https://doi.org/10.1145/2018396.2018417](https://doi.org/10.1145/2018396.2018417)
  123. ---
  124. ## Graphene-based nano-rectenna in the far infrared frequency band. European Microwave Conference., IEEE
  125. [https://doi.org/10.1109/EuMC.2014.6986657](https://doi.org/10.1109/EuMC.2014.6986657)
  126. ---
  127. ## Intelligence and security in big 5G-oriented IoNT: An overview. Future Generation Computer Systems
  128. [https://doi.org/10.1016/j.future.2019.08.009](https://doi.org/10.1016/j.future.2019.08.009)
  129. ---
  130. ## Graphene quantum dots. Particle & Particle Systems Characterization.
  131. [https://doi.org/10.1002/ppsc.201300252](https://doi.org/10.1002/ppsc.201300252)
  132. ---
  133. ## Graphene nanomesh. Nature nanotechnology
  134. [https://doi.org/10.1038/nnano.2010.8](https://doi.org/10.1038/nnano.2010.8)
  135. ---
  136. ## Development of artificial neuronal networks for molecular communication. Nano Communication Networks
  137. [https://doi.org/10.1016/j.nancom.2011.05.004](https://doi.org/10.1016/j.nancom.2011.05.004)
  138. ---
  139. ## Fullerene C60 and graphene photosensibiles for photodynamic virus inactivation. Optical Interactions with Tissue and Cells
  140. [https://doi.org/10.1117/12.2294593](https://doi.org/10.1117/12.2294593)
  141. ---
  142. ## Imaging striatal dopamine release using a nongenetically encoded near infrared fluorescent catecholamine nanosensor.
  143. [https://doi.org/10.1126/sciadv.aaw3108](https://doi.org/10.1126/sciadv.aaw3108)
  144. ---
  145. ## Teslaphoresis of carbon nanotubes
  146. [https://doi.org/10.1021/acsnano.6b02313](https://doi.org/10.1021/acsnano.6b02313)
  147. ---
  148. ## Multi-walled carbon nanotubes induce T-lymphocyte apoptosis. Toxicology letters
  149. [https://doi.org/10.1016/j.toxlet.2005.06.020](https://doi.org/10.1016/j.toxlet.2005.06.020)
  150. ---
  151. ## Energy Efficiency Coordinate and Routing System for Nanonetworks. International Symposium on Modelling and Implementation of Complex Systems
  152. [https://doi.org/10.1007/978-3-030-58861-8_2](https://doi.org/10.1007/978-3-030-58861-8_2)
  153. ---
  154. ## Distributed Cluster-based Coordinate and Routing System for Nanonetworks
  155. [https://doi.org/10.1109/UEMCON51285.2020.9298084](https://doi.org/10.1109/UEMCON51285.2020.9298084)
  156. ---
  157. ## An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis.
  158. [https://doi.org/10.1016/j.carbon.2007.05.011](https://doi.org/10.1016/j.carbon.2007.05.011)
  159. ---
  160. ## Coatings of different carbon nanotubes on platinum electrodes for neuronal devices: Preparation, cytocompatibility and interaction with spiral ganglion cells
  161. [https://doi.org/10.1371/journal.pone.0158571.g002](https://doi.org/10.1371/journal.pone.0158571.g002)
  162. ---
  163. ## A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane. Nature nanotechnology
  164. [https://doi.org/10.1038/nnano.2015.279](https://doi.org/10.1038/nnano.2015.279)
  165. ---
  166. ## Microfabricated structures for integrated DNA analysis. Proceedings of the National Academy of Sciences
  167. [https://doi.org/10.1073/pnas.93.11.5556](https://doi.org/10.1073/pnas.93.11.5556)
  168. ---
  169. ## Distributed topology discovery in self-assembled nano network-on-chip. Computers & Electrical Engineering
  170. [https://doi.org/10.1016/j.compeleceng.2014.09.003](https://doi.org/10.1016/j.compeleceng.2014.09.003)
  171. ---
  172. ## Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nature nanotechnology
  173. [https://doi.org/10.1038/nnano.2008.374](https://doi.org/10.1038/nnano.2008.374)
  174. ---
  175. ## Tunable optical performances on a periodic array of plasmonic bowtie nanoantennas with hollow cavities. Nanoscale research letters
  176. [https://doi.org/10.1186/s11671-016-1636-x](https://doi.org/10.1186/s11671-016-1636-x)
  177. ---
  178. ## A novel biocompatible conducting polyvinyl alcohol (PVA)-polyvinylpyrrolidone (PVP)-hydroxyapatite (HAP) composite scaffolds for probable biological application. Colloids and surfaces B: Biointerfaces
  179. [https://doi.org/10.1016/j.colsurfb.2016.03.027](https://doi.org/10.1016/j.colsurfb.2016.03.027)
  180. ---
  181. ## Stabilization and induction of oligonucleotide i-motif structure via graphene quantum dots
  182. [https://doi.org/10.1021/nn304673a](https://doi.org/10.1021/nn304673a)
  183. ---
  184. ## Bridged bowtie aperture antenna for producing an electromagnetic hot spot
  185. [https://doi.org/10.1021/acsphotonics.6b00857](https://doi.org/10.1021/acsphotonics.6b00857)
  186. ---
  187. ## THz time domain characterization of human skin tissue for nano-electromagnetic communication, IEEE.
  188. [https://doi.org/10.1109/MMS.2016.7803787](https://doi.org/10.1109/MMS.2016.7803787)
  189. ---
  190. ## Synthesis of strongly fluorescent graphene quantum dots by cage-opening buckminsterfullerene
  191. [https://doi.org/10.1021/nn505639q](https://doi.org/10.1021/nn505639q)
  192. ---
  193. ## Direct transformation of graphene to fullerene. Nature chemistry
  194. [https://doi.org/10.1038/nchem.644](https://doi.org/10.1038/nchem.644)
  195. ---
  196. ## Effect of single wall carbon nanotubes on human HEK293 cells. Toxicology letters
  197. [https://doi.org/10.1016/j.toxlet.2004.08.015](https://doi.org/10.1016/j.toxlet.2004.08.015)
  198. ---
  199. ## Carbon nanotubes as a basis for terahertz emitters and detectors. Microelectronics Journal
  200. [https://doi.org/10.1016/j.mejo.2008.11.016](https://doi.org/10.1016/j.mejo.2008.11.016)
  201. ---
  202. ## Graphene can wreak havoc with cell membranes. ACS applied materials & interfaces
  203. [https://doi.org/10.1021/am508938u](https://doi.org/10.1021/am508938u)
  204. ---
  205. ## Nano-Router Design for Nano-Communication in Single Layer Quantum Cellular Automata. International Conference on Computational Intelligence, Communications, and Business Analytics
  206. [https://doi.org/10.1007/978-981-10-6430-2_11](https://doi.org/10.1007/978-981-10-6430-2_11)
  207. ---
  208. ## Growth of carbon octopus-like structures from carbon black in a fluidized bed
  209. [https://doi.org/10.1166/mex.2013.1093](https://doi.org/10.1166/mex.2013.1093)
  210. ---
  211. ## In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicology in vitro
  212. [https://doi.org/10.1016/j.tiv.2006.10.007](https://doi.org/10.1016/j.tiv.2006.10.007)
  213. ---
  214. ## Designing an Efficient Self-Assembled Plasmonic Nanostructures from Spherical Shaped Nanoparticles. International Journal of Molecular Science.
  215. [https://www.preprints.org/manuscript/202109.0225/v1](https://www.preprints.org/manuscript/202109.0225/v1)
  216. ---
  217. ## Bit simulator, an electromagnetic nanonetworks simulator. Proceedings of the 5th ACM International Conference on Nanoscale Computing and Communication
  218. [https://doi.org/10.1145/3233188.3233205](https://doi.org/10.1145/3233188.3233205)
  219. ---
  220. ## Microscopic artificial swimmers. Nature.
  221. [https://doi.org/10.1038/nature04090](https://doi.org/10.1038/nature04090)
  222. ---
  223. ## Performance of nanoantenna-coupled geometric diode with infrared radiation.34th National Radio Science Conference, IEEE.
  224. [https://doi.org/10.1109/NRSC.2017.7893471](https://doi.org/10.1109/NRSC.2017.7893471)
  225. ---
  226. ## Nanoantenna with geometric diode for energy harvesting. Wireless Personal Communications
  227. [https://doi.org/10.1007/s11277-017-5159-2](https://doi.org/10.1007/s11277-017-5159-2)
  228. ---
  229. ## Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.
  230. [https://doi.org/10.1021/ar400299m](https://doi.org/10.1021/ar400299m)
  231. ---
  232. ## DNA-assisted microassembly: a hetrogeneous integration technology for optoelectronics. Heterogeneous Integration: Systems on a Chip: A Critical Review, International Society for Optics and Photonics.
  233. [https://doi.org/10.1117/12.300616](https://doi.org/10.1117/12.300616)
  234. ---
  235. ## Interfacing neurons with carbon nanotubes: (re) engineering neuronal signaling. Progress in brain research.
  236. [https://doi.org/10.1016/B978-0-444-53815-4.00003-0](https://doi.org/10.1016/B978-0-444-53815-4.00003-0)
  237. ---
  238. ## Carbon nanotubes in neuroregeneration and repair. Advanced drug delivery reviews
  239. [https://doi.org/10.1016/j.addr.2013.07.002](https://doi.org/10.1016/j.addr.2013.07.002)
  240. ---
  241. ## An efficient routing scheme for intrabody nanonetworks using artificial bee colony algorithm. IEEE Access
  242. [https://doi.org/10.1109/ACCESS.2020.2997635](https://doi.org/10.1109/ACCESS.2020.2997635)
  243. ---
  244. ## Data communication in electromagnetic nano-networks for healthcare applications.International Conference on Mobile, Secure, and Programmable Networking
  245. [https://doi.org/10.1007/978-3-030-22885-9_13](https://doi.org/10.1007/978-3-030-22885-9_13)
  246. ---
  247. ## Lattice mismatch in crystalline nanoparticle thin films. Nano letters
  248. [https://doi.org/10.1021/acs.nanolett.7b04737](https://doi.org/10.1021/acs.nanolett.7b04737)
  249. ---
  250. ## Carbon nanotubes carrying cell-adhesion peptides do not interfere with neuronal functionality.
  251. [https://doi.org/10.1002/adma.200900050](https://doi.org/10.1002/adma.200900050)
  252. ---
  253. ## Nano-networks communication architecture: Modeling and functions. Nano Communication Networks
  254. [https://doi.org/10.1016/j.nancom.2018.07.001](https://doi.org/10.1016/j.nancom.2018.07.001)
  255. ---
  256. ## Probability-based path discovery protocol for electromagnetic nano-networks. Computer Networks
  257. [https://doi.org/10.1016/j.comnet.2020.107246](https://doi.org/10.1016/j.comnet.2020.107246)
  258. ---
  259. ## Silsesquioxane-cored star amphiphilic polymer as an efficient dispersant for multi-walled carbon nanotubes
  260. [https://doi.org/10.1039/C6RA00130K](https://doi.org/10.1039/C6RA00130K)
  261. ---
  262. ## Red, yellow, and blue luminescence by graphene quantum dots: syntheses, mechanism, and cellular imaging. ACS applied materials & interfaces
  263. [https://doi.org/10.1021/acsami.7b05569](https://doi.org/10.1021/acsami.7b05569)
  264. ---
  265. ## Hybrid plasmonic nano-emitters with controlled single quantum emitter positioning on the local excitation field
  266. [https://doi.org/10.1038/s41467-020-17248-8](https://doi.org/10.1038/s41467-020-17248-8)
  267. ---
  268. ## Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications
  269. [https://doi.org/10.1021/cr3000412](https://doi.org/10.1021/cr3000412)
  270. ---
  271. ## Low Reynolds number turbulence modeling of blood flow in arterial stenoses.
  272. [https://doi.org/10.1016/S0006-355X(99](https://doi.org/10.1016/S0006-355X(99)
  273. ---
  274. ## Stimulation of neural cells by lateral currents in conductive layer-by-layer films of single-walled carbon nanotubes. Advanced Materials
  275. [https://doi.org/10.1002/adma.200600878](https://doi.org/10.1002/adma.200600878)
  276. ---
  277. ## Multi-walled carbon nanotubes (MWCNT): induction of DNA damage in plant and mammalian cells. Journal of hazardous materials
  278. [https://doi.org/10.1016/j.jhazmat.2011.09.090](https://doi.org/10.1016/j.jhazmat.2011.09.090)
  279. ---
  280. ## Preparation of chitosan/poly (vinyl alcohol) nanocomposite films incorporated with oxidized carbon nano-onions (multi-layer fullerenes) for tissue-engineering applications. Biomolecules
  281. [https://doi.org/10.3390/biom9110684](https://doi.org/10.3390/biom9110684)
  282. ---
  283. ## Optical properties of new hybrid nanoantenna in submicron cavity.
  284. [https://doi.org/10.1088/1742-6596/2015/1/012052](https://doi.org/10.1088/1742-6596/2015/1/012052)
  285. ---
  286. ## A proximity-based programmable DNA nanoscale assembly line. Nature
  287. [https://doi.org/10.1038/nature09026](https://doi.org/10.1038/nature09026)
  288. ---
  289. ## Intra-body optical channel modeling for in vivo wireless nanosensor networks. IEEE transactions on nanobioscience
  290. [https://doi.org/10.1109/TNB.2015.2508042](https://doi.org/10.1109/TNB.2015.2508042)
  291. ---
  292. ## A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. Journal of the American Chemical Society
  293. [https://doi.org/10.1021/ja020393x](https://doi.org/10.1021/ja020393x)
  294. ---
  295. ## Effective Control of the Optical Bistability of a Three-Level Quantum Emitter near a Nanostructured Plasmonic Metasurface. Photonics
  296. [https://doi.org/10.3390/photonics8070285](https://doi.org/10.3390/photonics8070285)
  297. ---
  298. ## DNA origami: scaffolds for creating higher order structures.
  299. [https://doi.org/10.1021/acs.chemrev.6b00825](https://doi.org/10.1021/acs.chemrev.6b00825)
  300. ---
  301. ## Polyethyleneimine functionalized single-walled carbon nanotubes as a substrate for neuronal growth.
  302. [https://doi.org/10.1021/jp0441137](https://doi.org/10.1021/jp0441137)
  303. ---
  304. ## Sub-10 nm electron beam lithography using cold development of poly (methylmethacrylate). Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena
  305. [https://doi.org/10.1116/1.1763897](https://doi.org/10.1116/1.1763897)
  306. ---
  307. ## High-resolution electron beam lithography and DNA nano-patterning for molecular QCA
  308. [https://doi.org/10.1109/TNANO.2005.847034](https://doi.org/10.1109/TNANO.2005.847034)
  309. ---
  310. ## Application of dextran as nanoscale drug carriers. Nanomedicine
  311. [https://doi.org/10.2217/nnm-2018-0331](https://doi.org/10.2217/nnm-2018-0331)
  312. ---
  313. ## Design of sequential circuits by quantum-
  314. dot cellular automata. Microelectronics Journal
  315. [https://doi.org/10.1016/j.mejo.2007.03.013](https://doi.org/10.1016/j.mejo.2007.03.013)
  316. ---
  317. ## QCA-based Hamming code circuit for nano communication network. Microprocessors and Microsystems
  318. [https://doi.org/10.1016/j.micpro.2021.104237](https://doi.org/10.1016/j.micpro.2021.104237)
  319. ---
  320. ## Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environmental science & technology
  321. [https://doi.org/10.1021/es048729l](https://doi.org/10.1021/es048729l)
  322. ---
  323. ## A Janus porous carbon nanotubes/poly (vinyl alcohol) composite evaporator for efficient solar-driven interfacial water evaporation. Separation and Purification Technology
  324. [https://doi.org/10.1016/j.seppur.2021.118459](https://doi.org/10.1016/j.seppur.2021.118459)
  325. ---
  326. ## Carbon nanotubes and graphene as emerging candidates in neuroregeneration and neurodrug delivery. International journal of nanomedicine
  327. [https://dx.doi.org/10.2147%2FIJN.S83777](https://dx.doi.org/10.2147%2FIJN.S83777)
  328. ---
  329. ## Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks. IEEE Journal on selected areas in communications
  330. [https://doi.org/10.1109/JSAC.2013.SUP2.1213001](https://doi.org/10.1109/JSAC.2013.SUP2.1213001)
  331. ---
  332. ## Femtosecond-long pulse-based modulation for terahertz band communication in nanonetworks. IEEE Transactions on Communications,
  333. [https://doi.org/10.1109/TCOMM.2014.033014.130403](https://doi.org/10.1109/TCOMM.2014.033014.130403)
  334. ---
  335. ## Nano Communication Networks
  336. [http://dx.doi.org/10.1016/j.nancom.2014.04.001](http://dx.doi.org/10.1016/j.nancom.2014.04.001)
  337. ---
  338. ## Phlame: A physical layer aware mac protocol for electromagnetic nanonetworks in the terahertz band. Nano Communication Networks
  339. [https://doi.org/10.1016/j.nancom.2012.01.006](https://doi.org/10.1016/j.nancom.2012.01.006)
  340. ---
  341. ## Modification of structural and luminescence properties of graphene quantum dots by gamma irradiation and their application in a photodynamic therapy
  342. [https://doi.org/10.1021/acsami.5b08226](https://doi.org/10.1021/acsami.5b08226)
  343. ---
  344. ## The interaction of carbon nanotubes with an in vitro blood-brain barrier model and mouse brain in vivo. Biomaterials.
  345. [https://doi.org/10.1016/j.biomaterials.2015.02.083](https://doi.org/10.1016/j.biomaterials.2015.02.083)
  346. ---
  347. ## DNA-Templated Carbon Nanotube Field-Effect Transistor
  348. [https://doi.org/10.1126/science.1091022](https://doi.org/10.1126/science.1091022)
  349. ---
  350. ## Metal-insulator-metal diodes with sub-nanometre surface roughness for energy-harvesting applications. Microelectronic Engineering.
  351. [https://doi.org/10.1016/j.mee.2017.07.003](https://doi.org/10.1016/j.mee.2017.07.003)
  352. ---
  353. ## External amplitude and frequency modulation of a terahertz quantum cascade laser using metamaterial/graphene devices
  354. [https://doi.org/10.1038/s41598-017-07943-w](https://doi.org/10.1038/s41598-017-07943-w)
  355. ---
  356. ## Extraordinary infrared transmission through a periodic bowtie aperture array
  357. [https://doi.org/10.1364/OL.35.000992](https://doi.org/10.1364/OL.35.000992)
  358. ---
  359. ## Ultrafast third-harmonic spectroscopy of single nanoantennas fabricated using helium-ion beam lithography. In Advanced Fabrication Technologies for Micro/Nano Optics and Photonics IX (Vol. 9759, p. 975908). International Society for Optics and Photonics.
  360. [https://doi.org/10.1117/12.2212689](https://doi.org/10.1117/12.2212689)
  361. ---
  362. ## Fabrication of nanoscale gaps in integrated circuits. Applied physics letters.
  363. [https://doi.org/10.1063/1.1495080](https://doi.org/10.1063/1.1495080)
  364. ---
  365. ## Blood flow in arteries. Annual review of fluid mechanics.
  366. [https://doi.org/10.1146/annurev.fluid.29.1.399](https://doi.org/10.1146/annurev.fluid.29.1.399)
  367. ---
  368. ## In situ precipitation of Nickel-hexacyanoferrate within multi-walled carbon nanotube modified electrode and its selective hydrazine electrocatalysis in physiological pH. Journal of electroanalytical chemistry
  369. [https://doi.org/10.1016/j.jelechem.2011.01.022](https://doi.org/10.1016/j.jelechem.2011.01.022)
  370. ---
  371. ## A Compact Graphene Based Nano-Antenna for Communication in Nano-Network. Journal of the Institute of Electronics and Computer.
  372. [https://doi.org/10.33969/JIEC.2019.11003](https://doi.org/10.33969/JIEC.2019.11003)
  373. ---
  374. ## Directed self-assembly: expectations and achievements. Nanoscale research letters
  375. [https://doi.org/10.1007/s11671-010-9696-9](https://doi.org/10.1007/s11671-010-9696-9)
  376. ---
  377. ## Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors. IEEE Transactions on electron devices.
  378. [https://doi.org/10.1109/TED.2003.816522](https://doi.org/10.1109/TED.2003.816522)
  379. ---
  380. ## DNA origami scaffolds as templates for functional tetrameric Kir3 K+ channels. Angewandte Chemie International Edition.
  381. [https://doi.org/10.1002/anie.201709982](https://doi.org/10.1002/anie.201709982)
  382. ---
  383. ## Nanoarchitecture of Quantum-Dot Cellular Automata (QCA) Using Small Area for Digital Circuits. Advanced Electronics Circuits–Principles, Architectures and Applications on Emerging Technologies
  384. [https://www.intechopen.com/chapters/58619](https://www.intechopen.com/chapters/58619)
  385. ---
  386. ## Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicological sciences.
  387. [https://doi.org/10.1093/toxsci/kfg243](https://doi.org/10.1093/toxsci/kfg243)
  388. ---
  389. ## Adsorption of small organic molecules on graphene. Journal of the American Chemical Society
  390. [https://doi.org/10.1021/ja403162r](https://doi.org/10.1021/ja403162r)
  391. ---
  392. ## Design of wireless nanosensor networks for intrabody application. International Journal of Distributed Sensor Networks
  393. [https://doi.org/10.1155/2015/176761](https://doi.org/10.1155/2015/176761)
  394. ---
  395. ## Carbon nanotubes as electrical interfaces with neurons. Brain Protection in Schizophrenia, Mood and Cognitive Disorders
  396. [https://doi.org/10.1007/978-90-481-8553-5_11](https://doi.org/10.1007/978-90-481-8553-5_11)
  397. ---
  398. ## Bending dynamics of DNA-linked colloidal particle chains. Soft Matter.
  399. [https://doi.org/10.1039/C0SM00159G](https://doi.org/10.1039/C0SM00159G)
  400. ---
  401. ## Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proceedings of the National Academy of Sciences.
  402. [https://doi.org/10.1073/pnas.1222276110](https://doi.org/10.1073/pnas.1222276110)
  403. ---
  404. ## A review on the cytotoxicity of graphene quantum dots: from experiment to simulation. Nanoscale Advances
  405. [https://doi.org/10.1039/D0NA00904K](https://doi.org/10.1039/D0NA00904K)
  406. ---
  407. ## Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: origin of blue and green luminescence. Advanced materials
  408. [https://doi.org/10.1002/adma.201300233](https://doi.org/10.1002/adma.201300233)
  409. ---
  410. ## A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. Journal of the American Chemical Society
  411. [https://doi.org/10.1021/ja034775u](https://doi.org/10.1021/ja034775u)
  412. ---
  413. ## Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles.
  414. [https://doi.org/10.1002/ange.200502589](https://doi.org/10.1002/ange.200502589)
  415. ---
  416. ## Building ordered nanoparticle assemblies inspired by atomic epitaxy. Physical Chemistry Chemical Physics.
  417. [https://doi.org/10.1039/D1CP02373J](https://doi.org/10.1039/D1CP02373J)
  418. ---
  419. ## Glutathione-functionalized graphene quantum dots as selective fluorescent probes for phosphate-containing metabolites. Nanoscale.
  420. [https://doi.org/10.1039/C3NR33794D](https://doi.org/10.1039/C3NR33794D)
  421. ---
  422. ## Dielectrophoretic manipulation of nanomaterials: A review. Electrophoresis.
  423. [https://doi.org/10.1002/elps.201800342](https://doi.org/10.1002/elps.201800342)
  424. ---
  425. ## Mild in situ growth of platinum nanoparticles on multiwalled carbon nanotube-poly (vinyl alcohol) hydrogel electrode for glucose electrochemical oxidation. Journal of Nanoparticle Research
  426. [https://doi.org/10.1007/s11051-015-3274-0](https://doi.org/10.1007/s11051-015-3274-0)
  427. ---
  428. ## Catalytic carbon formation: Clarifying the alternative kinetic routes and defining a kinetic linearity for sustained growth concept. Reaction Kinetics, Mechanisms and Catalysis
  429. [https://doi.org/10.1007/s11144-016-0993-x](https://doi.org/10.1007/s11144-016-0993-x)
  430. ---
  431. ## Nucleation and growth of carbon nanotubes and nanofibers: Mechanism and catalytic geometry control
  432. [https://doi.org/10.1016/j.carbon.2016.12.005](https://doi.org/10.1016/j.carbon.2016.12.005)
  433. ---
  434. ## Transforming C60 molecules into graphene quantum dots. Nature nanotechnology.
  435. [https://doi.org/10.1038/nnano.2011.30](https://doi.org/10.1038/nnano.2011.30)
  436. ---
  437. ## Molecular robots guided by prescriptive landscapes. Nature
  438. [https://doi.org/10.1038/nature09012](https://doi.org/10.1038/nature09012)
  439. ---
  440. ## Glial interfaces: advanced materials and devices to uncover the role of astroglial cells in brain function and dysfunction. Advanced Healthcare Materials
  441. [https://onlinelibrary.wiley.com/doi/epdf/10.1002/adhm.202001268](https://onlinelibrary.wiley.com/doi/epdf/10.1002/adhm.202001268)
  442. ---
  443. ## Molecular communication nanonetworks inside human body. Nano Communication Networks
  444. [https://doi.org/10.1016/j.nancom.2011.10.002](https://doi.org/10.1016/j.nancom.2011.10.002)
  445. ---
  446. ## Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-κB in human keratinocytes. Nano letters.
  447. [https://doi.org/10.1021/nl0507966](https://doi.org/10.1021/nl0507966)
  448. ---
  449. ## Colloidal microworms propelling via a cooperative hydrodynamic conveyor belt
  450. [https://doi.org/10.1103/PhysRevLett.115.138301](https://doi.org/10.1103/PhysRevLett.115.138301)
  451. ---
  452. ## Quantum Hall effect in fractal graphene: growth and properties of graphlocons. Nanotechnology.
  453. [https://doi.org/10.1088/0957-4484/24/32/325601](https://doi.org/10.1088/0957-4484/24/32/325601)
  454. ---
  455. ## Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. Journal of Molecular Neuroscience
  456. [https://doi.org/10.1385/JMN:14:3:175](https://doi.org/10.1385/JMN:14:3:175)
  457. ---
  458. ## Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits. Journal of Neuroscience
  459. [https://doi.org/10.1523/JNEUROSCI.1051-07.2007](https://doi.org/10.1523/JNEUROSCI.1051-07.2007)
  460. ---
  461. ## Ordered nanoparticle arrays formed on engineered chaperonin protein templates. Nature materials
  462. [https://doi.org/10.1038/nmat775](https://doi.org/10.1038/nmat775)
  463. ---
  464. ## Accelerating the translation of nanomaterials in biomedicine. ACS nano
  465. [https://doi.org/10.1021/acsnano.5b03569](https://doi.org/10.1021/acsnano.5b03569)
  466. ---
  467. ## New fully single layer QCA full-adder cell based on feedback model. International Journal of High Performance Systems Architecture.
  468. [https://doi.org/10.1504/IJHPSA.2015.072847](https://doi.org/10.1504/IJHPSA.2015.072847)
  469. ---
  470. ## Optimizing energy consumption in terahertz band nanonetworks. IEEE Journal on Selected Areas in Communications.
  471. [https://doi.org/10.1109/JSAC.2014.2367668](https://doi.org/10.1109/JSAC.2014.2367668)
  472. ---
  473. ## DRIH-MAC: A distributed receiver-initiated harvesting-aware MAC for nanonetworks. IEEE Transactions on Molecular, Biological and Multi-Scale Communications.
  474. [https://doi.org/10.1109/TMBMC.2015.2465519](https://doi.org/10.1109/TMBMC.2015.2465519)
  475. ---
  476. ## Clastogenic and aneugenic effects of multi-wall carbon nanotubes in epithelial cells. Carcinogenesis.
  477. [https://doi.org/10.1093/carcin/bgm243](https://doi.org/10.1093/carcin/bgm243)
  478. ---
  479. ## Metallic plasmonic nano-antenna for wireless optical communication in intra-body nanonetworks.Proceedings of the 10th EAI International Conference on Body Area Networks
  480. [https://doi.org/10.4108/eai.28-9-2015.2261410](https://doi.org/10.4108/eai.28-9-2015.2261410)
  481. ---
  482. ## Molecular communication and networking: Opportunities and challenges. IEEE transactions on nanobioscience
  483. [https://doi.org/10.1109/TNB.2012.2191570](https://doi.org/10.1109/TNB.2012.2191570)
  484. ---
  485. ## DNA-guided crystallization of colloidal nanoparticles. Nature.
  486. [https://doi.org/10.1038/nature06560](https://doi.org/10.1038/nature06560)
  487. ---
  488. ## Top-down nanofabrication approaches toward single-digit-nanometer scale structures. Journal of Mechanical Science and Technology.
  489. [https://doi.org/10.1007/s12206-021-0243-7](https://doi.org/10.1007/s12206-021-0243-7)
  490. ---
  491. ## A bipedal DNA Brownian motor with coordinated legs. Science.
  492. [https://doi.org/10.1126/science.1170336](https://doi.org/10.1126/science.1170336)
  493. ---
  494. ## Repairing peripheral nerves: is there a role for carbon nanotubes?. Advanced healthcare materials
  495. [https://doi.org/10.1002/adhm.201500864](https://doi.org/10.1002/adhm.201500864)
  496. ---
  497. ## Docking of antibodies into the cavities of DNA origami structures. Angewandte Chemie.
  498. [https://doi.org/10.1002/ange.201706765](https://doi.org/10.1002/ange.201706765)
  499. ---
  500. ## Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science
  501. [https://doi.org/10.1126/science.aat4422](https://doi.org/10.1126/science.aat4422)
  502. ---
  503. ## An expanded palette of dopamine sensors for multiplex imaging in vivo. Nature methods.
  504. [https://doi.org/10.1038/s41592-020-0936-3](https://doi.org/10.1038/s41592-020-0936-3)
  505. ---
  506. ## Role of C–N configurations in the photoluminescence of graphene quantum dots synthesized by a hydrothermal route. Scientific reports.
  507. [https://doi.org/10.1038/srep21042](https://doi.org/10.1038/srep21042)
  508. ---
  509. ## Experimental study of perovskite nanocrystals as single photon sources for integrated quantum photonics.
  510. [https://arxiv.org/pdf/2105.14245.pdf](https://arxiv.org/pdf/2105.14245.pdf)
  511. ---
  512. ## Electron-beam lithography and molecular liftoff for directed attachment of DNA nanostructures on silicon: Top-down meets bottom-up. Accounts of chemical research
  513. [https://doi.org/10.1021/ar500001e](https://doi.org/10.1021/ar500001e)
  514. ---
  515. ## On the design of an energy-harvesting protocol stack for Body Area Nano-NETworks. Nano Communication Networks.
  516. [https://doi.org/10.1016/j.nancom.2014.10.001](https://doi.org/10.1016/j.nancom.2014.10.001)
  517. ---
  518. ## Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicology letters.
  519. [https://doi.org/10.1016/j.toxlet.2006.11.001](https://doi.org/10.1016/j.toxlet.2006.11.001)
  520. ---
  521. ## Fluorescent graphene quantum dots as traceable, pH-sensitive drug delivery systems. International journal of nanomedicine
  522. [https://dx.doi.org/10.2147%2FIJN.S91864](https://dx.doi.org/10.2147%2FIJN.S91864)
  523. ---
  524. ## Multifunctionality of structural nanohybrids: The crucial role of carbon nanotube covalent and non-covalent functionalization in enabling high thermal, mechanical and self-healing performance. Nanotechnology.
  525. [https://doi.org/10.1088/1361-6528/ab7678](https://doi.org/10.1088/1361-6528/ab7678)
  526. ---
  527. ## Graphene-enabled silver nanoantenna sensors. Nano letters.
  528. [https://doi.org/10.1021/nl301555t](https://doi.org/10.1021/nl301555t)
  529. ---
  530. ## Un simulador de defectos para el análisis de robustez de circuitos QCA = A Defects Simulator for Robustness Analysis of QCA Circuits. Journal of Integrated Circuits and Systems
  531. [https://doi.org/10.29292/jics.v11i2.433](https://doi.org/10.29292/jics.v11i2.433)
  532. ---
  533. ## Heterojunctions between metals and carbon nanotubes as ultimate nanocontacts. Proceedings of the National Academy of Sciences
  534. [https://doi.org/10.1073/pnas.0900960106](https://doi.org/10.1073/pnas.0900960106)
  535. ---
  536. ## Single molecule detection and macromolecular weighting using an all-carbon-nanotube nanoelectromechanical sensor. 4th IEEE Conference on Nanotechnology
  537. [https://doi.org/10.1109/NANO.2004.1392318](https://doi.org/10.1109/NANO.2004.1392318)
  538. ---
  539. ## Single-walled carbon nanotubes chemically functionalized with polyethylene glycol promote tissue repair in a rat model of spinal cord injury. Journal of neurotrauma.
  540. [https://doi.org/10.1089/neu.2010.1409](https://doi.org/10.1089/neu.2010.1409)
  541. ---
  542. ## Nano-rectenna powered body-centric nano-networks in the terahertz band. Healthcare technology letters
  543. [http://dx.doi.org/10.1049/htl.2017.0034](http://dx.doi.org/10.1049/htl.2017.0034)
  544. ---
  545. ## Folding DNA to create nanoscale shapes and patterns. Nature
  546. [https://doi.org/10.1038/nature04586](https://doi.org/10.1038/nature04586)
  547. ---
  548. ## Carbon Nano-Octopi: Growth and Characterisation. University of Surrey (United Kingdom)
  549. [https://www.proquest.com/openview/fd52e404bd09604147ca46b3a6e50f60/1](https://www.proquest.com/openview/fd52e404bd09604147ca46b3a6e50f60/1)
  550. ---
  551. ## Novel efficient full adder and full subtractor designs in quantum cellular automata. The Journal of Supercomputing
  552. [https://doi.org/10.1007/s11227-019-03073-4](https://doi.org/10.1007/s11227-019-03073-4)
  553. ---
  554. ## Nanorouter: a quantum-dot cellular automata design. IEEE Journal on Selected Areas in Communications
  555. [https://doi.org/10.1109/JSAC.2013.SUP2.12130015](https://doi.org/10.1109/JSAC.2013.SUP2.12130015)
  556. ---
  557. ## Tcam/cam-qca:(ternary) content addressable memory using quantum-dot cellular automata. Microelectronics Journal
  558. [https://doi.org/10.1016/j.mejo.2015.03.020](https://doi.org/10.1016/j.mejo.2015.03.020)
  559. ---
  560. ## Bilayer-spanning DNA nanopores with voltage-switching between open and closed state. ACS nano.
  561. [https://doi.org/10.1021/nn5039433](https://doi.org/10.1021/nn5039433)
  562. ---
  563. ## Functional Nanomaterial-Enabled Synthetic Biology. Nano Futures.
  564. [https://doi.org/10.1088/2399-1984/abfd97](https://doi.org/10.1088/2399-1984/abfd97)
  565. ---
  566. ## A carbon nanotube optical rectenna. Nature nanotechnology
  567. [https://doi.org/10.1038/nnano.2015.220](https://doi.org/10.1038/nnano.2015.220)
  568. ---
  569. ## Carbon nanomaterials and their synthesis from plant-derived precursors. Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry
  570. [https://www.tandfonline.com/doi/abs/10.1080/15533170600596048](https://www.tandfonline.com/doi/abs/10.1080/15533170600596048)
  571. ---
  572. ## Three-dimensional nanolithography guided by DNA modular epitaxy. Nature Materials.
  573. [https://doi.org/10.1038/s41563-021-00930-7](https://doi.org/10.1038/s41563-021-00930-7)
  574. ---
  575. ## One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New Journal of Chemistry
  576. [https://doi.org/10.1016/j.snb.2014.05.045](https://doi.org/10.1016/j.snb.2014.05.045)
  577. ---
  578. ## Blood–brain barrier transport studies, aggregation, and molecular dynamics simulation of multiwalled carbon nanotube functionalized with fluorescein isothiocyanate. International journal of nanomedicine
  579. [https://dx.doi.org/10.2147%2FIJN.S68429](https://dx.doi.org/10.2147%2FIJN.S68429)
  580. ---
  581. ## Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. American Journal of Physiology-Lung Cellular and Molecular Physiology.
  582. [https://doi.org/10.1152/ajplung.00084.2005](https://doi.org/10.1152/ajplung.00084.2005)
  583. ---
  584. ## Energy Efficient MAC Protocol for Body Centric Nano-Networks (BANNET). ADVANCED COMPUTING (ICoAC 2017).
  585. [https://www.researchgate.net/profile/H-Mohana/publication/322790171](https://www.researchgate.net/profile/H-Mohana/publication/322790171)
  586. ---
  587. ## Blue and green luminescence of reduced graphene oxide quantum dots.
  588. [https://doi.org/10.1016/j.carbon.2013.07.031](https://doi.org/10.1016/j.carbon.2013.07.031)
  589. ---
  590. ## The missing memristor found. Nature.
  591. [https://doi.org/10.1038/nature06932](https://doi.org/10.1038/nature06932)
  592. ---
  593. ## A high-efficiency dual-frequency rectenna for 2.45-and 5.8-GHz wireless power transmission. IEEE Transactions on Microwave Theory and Techniques.
  594. [https://doi.org/10.1109/TMTT.2002.800430](https://doi.org/10.1109/TMTT.2002.800430)
  595. ---
  596. ## Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nature methods.
  597. [https://doi.org/10.1038/s41592-020-00981-9](https://doi.org/10.1038/s41592-020-00981-9)
  598. ---
  599. ## A simulation framework for neuron-based molecular communication. Procedia Computer Science.
  600. [https://doi.org/10.1016/j.procs.2013.10.032](https://doi.org/10.1016/j.procs.2013.10.032)
  601. ---
  602. ## A review on characterizations and biocompatibility of functionalized carbon nanotubes in drug delivery design. Journal of Nanomaterials.
  603. [https://doi.org/10.1155/2014/917024](https://doi.org/10.1155/2014/917024)
  604. ---
  605. ## Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicology in vitro.
  606. [https://doi.org/10.1016/j.tiv.2006.03.008](https://doi.org/10.1016/j.tiv.2006.03.008)
  607. ---
  608. ## Graphene quantum dots from chemistry to applications. Materials today chemistry.
  609. [https://doi.org/10.1016/j.mtchem.2018.09.007](https://doi.org/10.1016/j.mtchem.2018.09.007)
  610. ---
  611. ## Recent advances in anisotropic magnetic colloids: realization, assembly and applications. Physical chemistry chemical physics.
  612. [https://doi.org/10.1039/C4CP03099K](https://doi.org/10.1039/C4CP03099K)
  613. ---
  614. ## Magnetically actuated colloidal microswimmers. The Journal of Physical Chemistry B.
  615. [https://doi.org/10.1021/jp808354n](https://doi.org/10.1021/jp808354n)
  616. ---
  617. ## CORONA: A Coordinate and Routing system for Nanonetworks. Proceedings of the second annual international conference on nanoscale computing and communication.
  618. [https://doi.org/10.1145/2800795.2800809](https://doi.org/10.1145/2800795.2800809)
  619. ---
  620. ## Nuevo prototipo de micronadadores artificiales con aplicaciones en biotecnología. Noticias.
  621. [https://www.ub.edu/web/ub/es/menu_eines/noticies/2008/11/319.html](https://www.ub.edu/web/ub/es/menu_eines/noticies/2008/11/319.html)
  622. ---
  623. ## Transporting information and energy simultaneously. 2008 IEEE international symposium on information theory.
  624. [https://doi.org/10.1109/ISIT.2008.4595260](https://doi.org/10.1109/ISIT.2008.4595260)
  625. ---
  626. ## Rheological studies of thermo-responsive diblock copolymer worm gels. Soft Matter.
  627. [https://doi.org/10.1039/C2SM26156A](https://doi.org/10.1039/C2SM26156A)
  628. ---
  629. ## Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes. ACS nano.
  630. [https://doi.org/10.1021/acsnano.5b01060](https://doi.org/10.1021/acsnano.5b01060)
  631. ---
  632. ## Carbon nanotubes in neural interfacing applications. Journal of neural engineering.
  633. [https://doi.org/10.1088/1741-2560/8/1/011001](https://doi.org/10.1088/1741-2560/8/1/011001)
  634. ---
  635. ## Active generation of nanoholes in DNA origami scaffolds for programmed catalysis in nanocavities. Nature communications
  636. [https://doi.org/10.1038/s41467-019-12933-9](https://doi.org/10.1038/s41467-019-12933-9)
  637. ---
  638. ## Neural stimulation with a carbon nanotube microelectrode array. Nano letters.
  639. [https://doi.org/10.1021/nl061241t](https://doi.org/10.1021/nl061241t)
  640. ---
  641. ## The development and bio-applications of multifluid electrospinning. Materials Highlights
  642. [https://doi.org/10.2991/mathi.k.200521.001](https://doi.org/10.2991/mathi.k.200521.001)
  643. ---
  644. ## Relay analysis in molecular communications with time-dependent concentration. IEEE Communications Letters, 1977-1980.
  645. [https://doi.org/10.1109/LCOMM.2015.2478780](https://doi.org/10.1109/LCOMM.2015.2478780)
  646. ---
  647. ## Radiation properties of carbon nanotubes antenna at terahertz/infrared range. International Journal of Infrared and Millimeter Waves
  648. [https://doi.org/10.1007/s10762-007-9306-9](https://doi.org/10.1007/s10762-007-9306-9)
  649. ---
  650. ## Nanopatterned graphene quantum dots as building blocks for quantum cellular automata. Nanoscale
  651. [https://doi.org/10.1039/C1NR10489F](https://doi.org/10.1039/C1NR10489F)
  652. ---
  653. ## Emerging modalities and implantable technologies for neuromodulation.
  654. [https://doi.org/10.1016/j.cell.2020.02.054](https://doi.org/10.1016/j.cell.2020.02.054)
  655. ---
  656. ## Design and application of universal logic gate based on quantum-dot cellular automata. 2008 11th IEEE International Conference on Communication Technology.
  657. [https://doi.org/10.1109/ICCT.2008.4716260](https://doi.org/10.1109/ICCT.2008.4716260)
  658. ---
  659. ## Biomimetic carbon nanotubes for neurological disease therapeutics as inherent medication. Acta Pharmaceutica Sinica B.
  660. [https://doi.org/10.1016/j.apsb.2019.11.003](https://doi.org/10.1016/j.apsb.2019.11.003)
  661. ---
  662. ## Recent advances on graphene quantum dots: from chemistry and physics to applications. Advanced Materials
  663. [https://doi.org/10.1002/adma.201808283](https://doi.org/10.1002/adma.201808283)
  664. ---
  665. ## Graphene nanomesh: new versatile materials. Nanoscale.
  666. [https://doi.org/10.1039/C4NR04584J](https://doi.org/10.1039/C4NR04584J)
  667. ---
  668. ## Numerical analysis and characterization of THz propagation channel for body-centric nano-communications. IEEE Transactions on Terahertz Science and technology.
  669. [https://doi.org/10.1109/TTHZ.2015.2419823](https://doi.org/10.1109/TTHZ.2015.2419823)
  670. ---
  671. ## Joint parameter optimization for perpetual nanonetworks and maximum network capacity. IEEE Transactions on Molecular, Biological and Multi-Scale Communications
  672. [https://doi.org/10.1109/TMBMC.2016.2564967](https://doi.org/10.1109/TMBMC.2016.2564967)
  673. ---
  674. ## Controlled morphing of microbubbles to beaded nanofibers via electrically forced thin film stretching. Polymers.
  675. [https://doi.org/10.3390/polym9070265](https://doi.org/10.3390/polym9070265)
  676. ---
  677. ## Advances in bioresponsive closed-loop drug delivery systems. International journal of pharmaceutics.
  678. [https://doi.org/10.1016/j.ijpharm.2017.11.064](https://doi.org/10.1016/j.ijpharm.2017.11.064)
  679. ---
  680. ## Bowtie plasmonic quantum cascade laser antenna. Optics Express.
  681. [https://doi.org/10.1364/OE.15.013272:/doi.org/10.1109/ACCESS.2017.2713459](https://doi.org/10.1364/OE.15.013272:/doi.org/10.1109/ACCESS.2017.2713459)
  682. ---
  683. ## Energy harvesting enhancement of nanoantenna coupled to geometrie diode using transmitarray. 2017 Japan-Africa Conference on Electronics, Communications and Computers (JAC-ECC). IEEE
  684. [https://doi.org/10.1109/JEC-ECC.2017.8305799](https://doi.org/10.1109/JEC-ECC.2017.8305799)
  685. ---
  686. ## Performance analysis of carrier-less modulation schemes for wireless nanosensor networks. 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO)
  687. [https://doi.org/10.1109/NANO.2015.7388653](https://doi.org/10.1109/NANO.2015.7388653)
  688. ---
  689. ## Hybridized plasmon resonant modes in molecular metallodielectric quad-triangles nanoantenna. Optics Communications.
  690. [https://doi.org/10.1016/j.optcom.2015.06.040](https://doi.org/10.1016/j.optcom.2015.06.040)
  691. ---
  692. ## Novel PVA-Based Microspheres Co-Loaded with Photothermal Transforming Agent and Chemotherapeutic for Colorectal Cancer Treatment. Pharmaceutics.
  693. [https://doi.org/10.3390/pharmaceutics13070984](https://doi.org/10.3390/pharmaceutics13070984)
  694. ---
  695. ## Carbon nanofibers derived from bacterial cellulose: Surface modification by polydopamine and the use of ferrous ion as electrolyte additive for collaboratively increasing the supercapacitor performance. Applied Surface Science.
  696. [https://doi.org/10.1016/j.apsusc.2020.146252](https://doi.org/10.1016/j.apsusc.2020.146252)
  697. ---
  698. ## DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano letters.
  699. [https://doi.org/10.1021/nl071303v](https://doi.org/10.1021/nl071303v)
  700. ---

comments powered by Disqus