Untitled


SUBMITTED BY: canonical

DATE: May 10, 2017, 7:28 a.m.

FORMAT: Text only

SIZE: 3.5 kB

HITS: 629

  1. ####################################################################################### Chapter 2 key info
  2. ## [--Z Score--]: Value - Mean / Standard deviation.
  3. ## [--Density Curve--]: Overall pattern of the distribution, Total area sums to one.
  4. ## [--Sigma--]: σ “sigma” is the standard deviation of the density curve.
  5. ## [--Mu--]: μ “mu” is the mean of the density curve.
  6. ## [--Normal Distribution--]: Symmetric, unimodal, and bell shaped 1SD 68%, 2SD 95%,
  7. ## 3SD 99.7%.
  8. #####################################################################################
  9. #####################################################################################
  10. ## Chapter 3 key info
  11. ## [--Response Variable--]: Measures the outcome or the study, also called the
  12. ## dependent variable or "y"
  13. ## [--Explanatory Variable--]: Helps explain or influence the changes in the response
  14. ## variable. Also refereed to independent variable or "X"
  15. ## [--Scatter Plot--]: A graph that displays the relationship between X and Y from a
  16. ## single individual. Label X and Y axis intervals need to be equal scale can be
  17. ## different. Key parts {Ex img:imagebin.ca/v/3LxEZ1lTRw24}. How to describe a
  18. ## scatter plot {there is a "strength", "direction", "form" relationship between
  19. ## "explanatory" and "responses"}.
  20. ## [--Correlation--]: A measure of direction and strength of a linear relationship
  21. ## between two quantitative variables written as "r"
  22. ## [--r--]: "r" is always a number between -1 and 1. A positive association if "r"
  23. ## is positive and negative association if "r" is negative. A perfect linear
  24. ## relationship if -1 or 1.
  25. ## [--Regression Line--]: A straight line that describes how a response variable
  26. ## "y" changes as an explanatory variable "x" changes. Requires specific explanatory
  27. ## and response variables. Can be used to make predictions.
  28. ## [--Least squares regression line--]: the line that makes the sum of the squared
  29. ## vertical distances of actual data points from the predicted line as small as
  30. ## as possible. Formula: [-- p̂ = a + bx --] A=y-intercept b=slope y-hat is the
  31. ## predicted y. on formula sheet its p̂ = b0 + (b1 X).
  32. ## [--Predicted--]: Determine a specific y value from a given x value.
  33. ## [--Extrapolation--]: A prediction make that is outside of the domain of the
  34. ## explanatory variable.
  35. ## [--Describe an association--]: imagebin.ca/v/3LxRMgZrkFjp
  36. ## [--Fit of regression line--]: r=correlation measures strength and direction,
  37. ## residual=(observed value of y - predicted value of y) residual plot: a scatter
  38. ## plot of the explanatory variables and the residuals, R^2 percent of the variation
  39. ## in y can be attributed to the least squares linear relationship between x and y.
  40. ## [--Residual model--]: {Ex img: imagebin.ca/v/3LxTZRAe7xwO}
  41. #####################################################################################
  42. #####################################################################################
  43. ## Chapter 4 key info
  44. ## [--Causation--]: {Ex img: imagebin.ca/v/3LxWisyfKcaQ}
  45. ## {Ex img: imagebin.ca/v/3LxXKfElttz4}
  46. ## [--Linear Growth--]: Increase by a fixed amount in each equal time period
  47. ## form: y=a +bx.
  48. ## [--Exponential Growth--]: Increased by a fixed percent of the previous total
  49. ## form: Y=ab^x
  50. ## [--Power Model--]: Increases by a constant power form: Y=ax^b
  51. ##
  52. #####################################################################################

comments powered by Disqus