What do you want to track but think you can't?


SUBMITTED BY: Guest

DATE: Oct. 26, 2019, 8:34 a.m.

FORMAT: Text only

SIZE: 10.0 kB

HITS: 413

  1. What do you want to track but think you can't?
  2. Pretty much what the title says: Most the so called tracking and optimization I see being done here really doesn't help much IMHO.
  3. So what could you track on the person's interaction with your funnel that you think would help you to succeed more often (convert that person [that you keep referring to as 'traffic']).
  4. ++++++++++++++
  5. list of top cheapest host http://Listfreetop.pw
  6. Top 200 best traffic exchange sites http://Listfreetop.pw/surf
  7. free link exchange sites list http://Listfreetop.pw/links
  8. list of top ptc sites
  9. list of top ptp sites
  10. Listfreetop.pw
  11. Listfreetop.pw
  12. +++++++++++++++
  13. What data do you need for your 'formula' (traffic algorithm)?
  14. Do you make your own smart links -- and based on what?
  15. I am not talking about 'tools' per se I am talking about finding and utilizing (what) attributes?
  16. Do you even know what to track other than what you are offered?
  17. Does your offer (or affiliate program) allow you to add a key/value pair to the landing page URL? &k={value}
  18. PHP:
  19. $dottedFormatAddress = $ip;
  20. $ipv4address = sprintf("%u", ip2long($dottedFormatAddress));
  21. returns 185.136.156.195 now equals 3112737987 ID val
  22. I haven't had time to 'pretty up' that code snippet I found -- it's part of a longer script I am going to be using for traffic recording, selection and redirection.
  23. so k=$ipv4address
  24. in the url's query string:
  25. &k=3112737987?
  26. You database that number along with the campaign ID of the ad, the user country_code, the landing page of yours(id) and any data that is posted back with that ID.
  27. Now you can track that individual (IP) all of its interactions with your ads and websites, emails etc.
  28. If he buys from more than one campaign/or offer; that ID 3112737987 in that offer's stats.
  29. This is not an "invasion of privacy" I am just tracking with information given (broadcast) publicly. As long as I never resell that person's data without his permission it is also GDPR compliant.
  30. This is rather simple to program or to add to tracking tools (IMO).
  31. Note: I did not set or rely on a HTTP Cookie, tracking pixel (or other arcane method) :)
  32. I am not talking about 'tools' per se I am talking about finding and utilizing This is not an "invasion of privacy" I am just tracking with information given (broadcast) publicly
  33. q significa hosting en ingles
  34. pangea.group
  35. submit-jet.com
  36. d's hostel san ignacio
  37. ptcgroups.com
  38. wad.ojooo.com
  39. websurf.ru
  40. e doman orthopaedics
  41. www.macromedia.com
  42. domain khan academy
  43. Now you can track that individual (IP) all of its interactions with your ads and websites, emails etc
  44. That's a given -- the easy stuff ...
  45. My head hurts but I can see the people (70%+) behind the IP 'mask':
  46. mysql> SELECT DISTINCT * FROM usa_adx_traffic_sort
  47. -> ORDER BY count DESC limit 0, 10;
  48. +-------+-------------+-------+--------------+----------+
  49. | count | city | state | AVG_WealthRt | AVG_Algo |
  50. +-------+-------------+-------+--------------+----------+
  51. | 264 | Santee | CA | 1.31899432 | 3.23750 |
  52. | 165 | Los Angeles | CA | 1.03985455 | 2.42727 |
  53. | 147 | Chicago | IL | 1.38563265 | 3.75578 |
  54. | 129 | Woodland | CA | 1.32191783 | 2.36357 |
  55. | 112 | New York | NY | 1.77877143 | 3.95625 |
  56. | 109 | Los Angeles | CA | 1.00678532 | 3.09174 |
  57. | 94 | Bellaire | TX | 1.20100957 | 2.18085 |
  58. | 91 | Brooklyn | NY | 0.95858681 | 1.07363 |
  59. | 84 | Seattle | WA | 1.46963452 | 2.52262 |
  60. | 81 | Miami | FL | 0.87216049 | 1.74568 |
  61. +-------+-------------+-------+--------------+----------+
  62. 10 rows in set (0.00 sec)
  63. *Santee, Bellaire, and the 1st Los Angeles are Mobile and have a larger zip code radius ... causing statistical inaccuracies when sorting this way. In app GPS is used for mobile "GEO Fencing" the exact location +-30m
  64. mysql> SELECT DISTINCT * FROM usa_adx_traffic_sort
  65. -> ORDER BY AVG_WealthRt DESC limit 0, 10;
  66. +-------+-------------+-------+--------------+----------+
  67. | count | city | state | AVG_WealthRt | AVG_Algo |
  68. +-------+-------------+-------+--------------+----------+
  69. | 3 | Hoboken | NJ | 2.80000000 | 7.70000 |
  70. | 1 | Chappaqua | NY | 2.63640000 | 9.50000 |
  71. | 2 | Aldie | VA | 2.59550000 | 14.50000 |
  72. | 3 | Sammamish | WA | 2.58940000 | 15.20000 |
  73. | 3 | Chevy Chase | MD | 2.50910000 | 15.00000 |
  74. | 1 | Larchmont | NY | 2.36360000 | 5.90000 |
  75. | 3 | Westfield | NJ | 2.34090000 | 4.60000 |
  76. | 2 | Scarsdale | NY | 2.32270000 | 6.00000 |
  77. | 2 | Bethesda | MD | 2.29550000 | 11.60000 |
  78. | 1 | Chatham | NJ | 2.28640000 | 4.10000 |
  79. +-------+-------------+-------+--------------+----------+
  80. 10 rows in set (0.01 sec)
  81. mysql> SELECT DISTINCT * FROM usa_adx_traffic_sort
  82. -> ORDER BY AVG_Algo DESC limit 0, 10;
  83. +-------+-----------------+-------+--------------+----------+
  84. | count | city | state | AVG_WealthRt | AVG_Algo |
  85. +-------+-----------------+-------+--------------+----------+
  86. | 1 | Kapolei | HI | 1.36360000 | 33.20000 |
  87. | 2 | Folsom | CA | 1.71360000 | 20.00000 |
  88. | 1 | Lenexa | KS | 1.32270000 | 18.50000 |
  89. | 3 | Sammamish | WA | 2.58940000 | 15.20000 |
  90. | 3 | Chevy Chase | MD | 2.50910000 | 15.00000 |
  91. | 2 | Aldie | VA | 2.59550000 | 14.50000 |
  92. | 1 | Manhattan Beach | CA | 2.21360000 | 11.90000 |
  93. | 1 | Shepherdsville | KY | 1.05910000 | 11.90000 |
  94. | 2 | Bethesda | MD | 2.29550000 | 11.60000 |
  95. | 1 | Potomac | MD | 2.25910000 | 11.20000 |
  96. +-------+-----------------+-------+--------------+----------+
  97. 10 rows in set (0.00 sec)
  98. mysql> SELECT DISTINCT state
  99. -> ,city
  100. -> ,SUBSTRING(zip,1,4) as zipx,
  101. -> AVG_PerCapAGI,
  102. -> WealthRt, Algo
  103. -> FROM usa_algo_test
  104. -> WHERE city REGEXP 'Los Angeles'
  105. -> ORDER BY Algo DESC;
  106. +-------+-------------+------+---------------+----------+------+
  107. | state | city | zipx | AVG_PerCapAGI | WealthRt | Algo |
  108. +-------+-------------+------+---------------+----------+------+
  109. | CA | Los Angeles | 9001 | 89585 | 1.0500 | 17.8 |
  110. | CA | Los Angeles | 9002 | 154141 | 1.4136 | 7.8 |
  111. | CA | Los Angeles | 9007 | 134035 | 2.0045 | 6.4 |
  112. | CA | Los Angeles | 9002 | 118646 | 1.5318 | 4.5 |
  113. | CA | Los Angeles | 9001 | 93160 | 0.7182 | 3.4 |
  114. | CA | Los Angeles | 9006 | 86217 | 1.3591 | 2.9 |
  115. | CA | Los Angeles | 9001 | 72312 | 0.8818 | 2.3 |
  116. | CA | Los Angeles | 9003 | 72996 | 1.4000 | 2.1 |
  117. | CA | Los Angeles | 9004 | 57318 | 1.5500 | 2.0 |
  118. | CA | Los Angeles | 9003 | 58826 | 1.3318 | 1.9 |
  119. | CA | Los Angeles | 9004 | 88371 | 1.2545 | 1.8 |
  120. | CA | Los Angeles | 9001 | 80557 | 0.7636 | 1.5 |
  121. | CA | Los Angeles | 9004 | 47240 | 1.1227 | 1.4 |
  122. | CA | Los Angeles | 9006 | 58957 | 1.2818 | 1.4 |
  123. | CA | Los Angeles | 9003 | 58896 | 1.1591 | 1.3 |
  124. | CA | Los Angeles | 9002 | 79177 | 1.0273 | 0.7 |
  125. | CA | Los Angeles | 9004 | 45948 | 0.8636 | 0.6 |
  126. | CA | Los Angeles | 9001 | 44137 | 0.7500 | 0.5 |
  127. | CA | Los Angeles | 9001 | 52609 | 0.8045 | 0.5 |
  128. | CA | Los Angeles | 9002 | 58682 | 0.8318 | 0.5 |
  129. | CA | Los Angeles | 9002 | 73741 | 0.6455 | 0.5 |
  130. | CA | Los Angeles | 9002 | 80437 | 0.7909 | 0.5 |
  131. | CA | Los Angeles | 9004 | 40073 | 0.7682 | 0.5 |
  132. | CA | Los Angeles | 9004 | 43910 | 0.8136 | 0.5 |
  133. | CA | Los Angeles | 9003 | 40906 | 0.7727 | 0.4 |
  134. | CA | Los Angeles | 9001 | 47433 | 0.6818 | 0.3 |
  135. | CA | Los Angeles | 9003 | 71418 | 0.7273 | 0.3 |
  136. | CA | Los Angeles | 9005 | 22979 | 0.6045 | 0.3 |
  137. | CA | Los Angeles | 9006 | 69246 | 0.6545 | 0.3 |
  138. | CA | Los Angeles | 9000 | 43194 | 0.6182 | 0.2 |
  139. | CA | Los Angeles | 9000 | 67327 | 0.7045 | 0.2 |
  140. | CA | Los Angeles | 9002 | 54293 | 0.7000 | 0.2 |
  141. | CA | Los Angeles | 9002 | 64999 | 0.6045 | 0.2 |
  142. | CA | Los Angeles | 9003 | 45389 | 0.6727 | 0.2 |
  143. | CA | Los Angeles | 9004 | 41994 | 0.5864 | 0.2 |
  144. | CA | Los Angeles | 9000 | 22111 | 0.5500 | 0.1 |
  145. | CA | Los Angeles | 9000 | 40585 | 0.5773 | 0.1 |
  146. | CA | Los Angeles | 9000 | 43742 | 0.5909 | 0.1 |
  147. | CA | Los Angeles | 9001 | 63922 | 0.5409 | 0.1 |
  148. +-------+-------------+------+---------------+----------+------+
  149. 39 rows in set (0.01 sec)
  150. Sorting by GEO is a fool's game as you can see by the charts above ;)
  151. Image was too big
  152. Algo reflects the costs of living and the general lifestyle/livability and disposable/discretionary income of those that reside there.
  153. And then there is the POOR people :p
  154. in this traffic batch
  155. **this study was selective to adult traffic popups in May 2018
  156. your results will vary of course.
  157. mysql> SELECT DISTINCT * FROM usa_adx_traffic_sort
  158. -> ORDER BY AVG_WealthRt limit 0, 10;
  159. +-------+-------------+-------+--------------+----------+
  160. | count | city | state | AVG_WealthRt | AVG_Algo |
  161. +-------+-------------+-------+--------------+----------+
  162. | 2 | Laredo | TX | 0.53180000 | 0.40000 |
  163. | 5 | Camden | NJ | 0.56724000 | 0.40000 |
  164. | 14 | Detroit | MI | 0.56946429 | 0.41429 |
  165. | 2 | Brownsville | TX | 0.57500000 | 0.45000 |
  166. | 4 | Pontiac | MI | 0.57845000 | 0.27500 |
  167. | 4 | Jackson | MS | 0.58182500 | 0.37500 |
  168. | 1 | Harvey | IL | 0.58640000 | 0.50000 |
  169. | 2 | Edinburg | TX | 0.59775000 | 0.40000 |
  170. | 2 | Albany | GA | 0.60225000 | 0.35000 |
  171. | 1 | Ecorse | MI | 0.60450000 | 0.40000 |
  172. +-------+-------------+-------+--------------+----------+
  173. 10 rows in set (0.01 sec)
  174. mysql> SELECT DISTINCT * FROM usa_adx_traffic_sort
  175. -> ORDER BY AVG_Algo limit 0, 10;
  176. +-------+------------------+-------+--------------+----------+
  177. | count | city | state | AVG_WealthRt | AVG_Algo |
  178. +-------+------------------+-------+--------------+----------+
  179. | 2 | Lakewood | NJ | 0.80450000 | 0.20000 |
  180. | 4 | Pontiac | MI | 0.57845000 | 0.27500 |
  181. | 1 | Bronson | FL | 0.72270000 | 0.30000 |
  182. | 1 | Corona | NY | 0.63180000 | 0.30000 |
  183. | 1 | Freeport | TX | 0.84550000 | 0.30000 |
  184. | 1 | Hawaiian Gardens | CA | 0.66360000 | 0.30000 |
  185. | 1 | Lincoln City | OR | 0.80450000 | 0.30000 |
  186. | 1 | Louisville | GA | 0.64550000 | 0.30000 |
  187. | 1 | Lynwood | CA | 0.65910000 | 0.30000 |
  188. | 1 | Maxton | NC | 0.63180000 | 0.30000 |
  189. +-------+------------------+-------+--------------+----------+
  190. 10 rows in set (0.01 sec)

comments powered by Disqus