murphcom200


SUBMITTED BY: murphcom200

DATE: Oct. 3, 2016, 8:42 a.m.

FORMAT: Text only

SIZE: 33.4 kB

HITS: 1124

  1. First general-purpose computing device[edit]
  2. Main article: Analytical Engine
  3. A portion of Babbage's Difference engine
  4. Charles Babbage, an English mechanical engineer and polymath, originated the concept of a programmable computer. Considered the "father of the computer",[34] he conceptualized and invented the first mechanical computer in the early 19th century. After working on his revolutionary difference engine, designed to aid in navigational calculations, in 1833 he realized that a much more general design, an Analytical Engine, was possible. The input of programs and data was to be provided to the machine via punched cards, a method being used at the time to direct mechanical looms such as the Jacquard loom. For output, the machine would have a printer, a curve plotter and a bell. The machine would also be able to punch numbers onto cards to be read in later. It employed ordinary base-10 fixed-point arithmetic.
  5. The Engine incorporated an arithmetic logic unit, control flow in the form of conditional branching and loops, and integrated memory, making it the first design for a general-purpose computer that could be described in modern terms as Turing-complete.[35][36]
  6. There was to be a store, or memory, capable of holding 1,000 numbers of 40 decimal digits each (ca. 16.7 kB). An arithmetical unit, called the "mill", would be able to perform all four arithmetic operations, plus comparisons and optionally square roots. Initially it was conceived as a difference engine curved back upon itself, in a generally circular layout,[37] with the long store exiting off to one side. (Later drawings depict a regularized grid layout.)[38] Like the central processing unit (CPU) in a modern computer, the mill would rely upon its own internal procedures, roughly equivalent to microcode in modern CPUs, to be stored in the form of pegs inserted into rotating drums called "barrels", to carry out some of the more complex instructions the user's program might specify.[39]
  7. Reconstruction of Babbage's Analytical Engine, the first general-purpose programmable computer
  8. The programming language to be employed by users was akin to modern day assembly languages. Loops and conditional branching were possible, and so the language as conceived would have been Turing-complete as later defined by Alan Turing. Three different types of punch cards were used: one for arithmetical operations, one for numerical constants, and one for load and store operations, transferring numbers from the store to the arithmetical unit or back. There were three separate readers for the three types of cards.
  9. The machine was about a century ahead of its time. However, the project was slowed by various problems including disputes with the chief machinist building parts for it. All the parts for his machine had to be made by hand - this was a major problem for a machine with thousands of parts. Eventually, the project was dissolved with the decision of the British Government to cease funding. Babbage's failure to complete the analytical engine can be chiefly attributed to difficulties not only of politics and financing, but also to his desire to develop an increasingly sophisticated computer and to move ahead faster than anyone else could follow. Ada Lovelace, Lord Byron's daughter, translated and added notes to the "Sketch of the Analytical Engine" by Luigi Federico Menabrea. This appears to be the first published description of programming.[40]
  10. Following Babbage, although unaware of his earlier work, was Percy Ludgate, an accountant from Dublin, Ireland. He independently designed a programmable mechanical computer, which he described in a work that was published in 1909.[41]
  11. Analog computers[edit]
  12. Main article: Analog computer
  13. Sir William Thomson's third tide-predicting machine design, 1879–81
  14. In the first half of the 20th century, analog computers were considered by many to be the future of computing. These devices used the continuously changeable aspects of physical phenomena such as electrical, mechanical, or hydraulic quantities to model the problem being solved, in contrast to digital computers that represented varying quantities symbolically, as their numerical values change. As an analog computer does not use discrete values, but rather continuous values, processes cannot be reliably repeated with exact equivalence, as they can with Turing machines.[42]
  15. The first modern analog computer was a tide-predicting machine, invented by Sir William Thomson, later Lord Kelvin, in 1872. It used a system of pulleys and wires to automatically calculate predicted tide levels for a set period at a particular location and was of great utility to navigation in shallow waters. His device was the foundation for further developments in analog computing.[43]
  16. The differential analyser, a mechanical analog computer designed to solve differential equations by integration using wheel-and-disc mechanisms, was conceptualized in 1876 by James Thomson, the brother of the more famous Lord Kelvin. He explored the possible construction of such calculators, but was stymied by the limited output torque of the ball-and-disk integrators.[44] In a differential analyzer, the output of one integrator drove the input of the next integrator, or a graphing output.
  17. A Mk. I Drift Sight. The lever just in front of the bomb aimer's fingertips sets the altitude, the wheels near his knuckles set the wind and airspeed.
  18. An important advance in analog computing was the development of the first fire-control systems for long range ship gunlaying. When gunnery ranges increased dramatically in the late 19th century it was no longer a simple matter of calculating the proper aim point, given the flight times of the shells. Various spotters on board the ship would relay distance measures and observations to a central plotting station. There the fire direction teams fed in the location, speed and direction of the ship and its target, as well as various adjustments for Coriolis effect, weather effects on the air, and other adjustments; the computer would then output a firing solution, which would be fed to the turrets for laying. In 1912, British engineer Arthur Pollen developed the first electrically powered mechanical analogue computer (called at the time the Argo Clock).[45] It was used by the Imperial Russian Navy in World War I.[citation needed] The alternative Dreyer Table fire control system was fitted to British capital ships by mid-1916.
  19. Mechanical devices were also used to aid the accuracy of aerial bombing. Drift Sight was the first such aid, developed by Harry Wimperis in 1916 for the Royal Naval Air Service; it measured the wind speed from the air, and used that measurement to calculate the wind's effects on the trajectory of the bombs. The system was later improved with the Course Setting Bomb Sight, and reached a climax with World War II bomb sights, Mark XIV bomb sight (RAF Bomber Command) and the Norden[46] (United States Army Air Forces).
  20. The art of mechanical analog computing reached its zenith with the differential analyzer,[47] built by H. L. Hazen and Vannevar Bush at MIT starting in 1927, which built on the mechanical integrators of James Thomson and the torque amplifiers invented by H. W. Nieman. A dozen of these devices were built before their obsolescence became obvious; the most powerful was constructed at the University of Pennsylvania's Moore School of Electrical Engineering, where the ENIAC was built.
  21. A fully electronic general-purpose analog computer was built by Helmut Hölzer in 1941 at Peenemünde Army Research Center .[48]
  22. By the 1950s the success of digital electronic computers had spelled the end for most analog computing machines, but hybrid analog computers, controlled by digital electronics, remained in substantial use into the 1950s and 1960s, and later in some specialized applications.
  23. Advent of the digital computer[edit]
  24. The principle of the modern computer was first described by computer scientist Alan Turing, who set out the idea in his seminal 1936 paper,[49] On Computable Numbers. Turing reformulated Kurt Gödel's 1931 results on the limits of proof and computation, replacing Gödel's universal arithmetic-based formal language with the formal and simple hypothetical devices that became known as Turing machines. He proved that some such machine would be capable of performing any conceivable mathematical computation if it were representable as an algorithm. He went on to prove that there was no solution to the Entscheidungsproblem by first showing that the halting problem for Turing machines is undecidable: in general, it is not possible to decide algorithmically whether a given Turing machine will ever halt.
  25. He also introduced the notion of a 'Universal Machine' (now known as a Universal Turing machine), with the idea that such a machine could perform the tasks of any other machine, or in other words, it is provably capable of computing anything that is computable by executing a program stored on tape, allowing the machine to be programmable. Von Neumann acknowledged that the central concept of the modern computer was due to this paper.[50] Turing machines are to this day a central object of study in theory of computation. Except for the limitations imposed by their finite memory stores, modern computers are said to be Turing-complete, which is to say, they have algorithm execution capability equivalent to a universal Turing machine.
  26. Electromechanical computers[edit]
  27. The era of modern computing began with a flurry of development before and during World War II. Most digital computers built in this period were electromechanical - electric switches drove mechanical relays to perform the calculation. These devices had a low operating speed and were eventually superseded by much faster all-electric computers, originally using vacuum tubes.
  28. The Z2 was one of the earliest examples of an electromechanical relay computer, and was created by German engineer Konrad Zuse in 1939. It was an improvement on his earlier Z1; although it used the same mechanical memory, it replaced the arithmetic and control logic with electrical relay circuits.[51]
  29. Replica of Zuse's Z3, the first fully automatic, digital (electromechanical) computer
  30. In the same year, the electro-mechanical devices called bombes were built by British cryptologists to help decipher German Enigma-machine-encrypted secret messages during World War II. The initial design of the bombe was produced in 1939 at the UK Government Code and Cypher School (GC&CS) at Bletchley Park by Alan Turing,[52] with an important refinement devised in 1940 by Gordon Welchman.[53] The engineering design and construction was the work of Harold Keen of the British Tabulating Machine Company. It was a substantial development from a device that had been designed in 1938 by Polish Cipher Bureau cryptologist Marian Rejewski, and known as the "cryptologic bomb" (Polish: "bomba kryptologiczna").
  31. In 1941, Zuse followed his earlier machine up with the Z3,[54] the world's first working electromechanical programmable, fully automatic digital computer.[55] The Z3 was built with 2000 relays, implementing a 22 bit word length that operated at a clock frequency of about 5–10 Hz.[56] Program code and data were stored on punched film. It was quite similar to modern machines in some respects, pioneering numerous advances such as floating point numbers. Replacement of the hard-to-implement decimal system (used in Charles Babbage's earlier design) by the simpler binary system meant that Zuse's machines were easier to build and potentially more reliable, given the technologies available at that time.[57] The Z3 was probably a complete Turing machine. In two 1936 patent applications, Zuse also anticipated that machine instructions could be stored in the same storage used for data—the key insight of what became known as the von Neumann architecture, first implemented in the British SSEM of 1948.[58]
  32. Zuse suffered setbacks during World War II when some of his machines were destroyed in the course of Allied bombing campaigns. Apparently his work remained largely unknown to engineers in the UK and US until much later, although at least IBM was aware of it as it financed his post-war startup company in 1946 in return for an option on Zuse's patents.
  33. In 1944, the Harvard Mark I was constructed at IBM's Endicott laboratories;[59] it was a similar general purpose electro-mechanical computer to the Z3, but was not quite Turing-complete.
  34. Digital computation[edit]
  35. A mathematical basis of digital computing is Boolean algebra, developed by the British mathematician George Boole in his work The Laws of Thought, published in 1854. His Boolean algebra was further refined in the 1860s by William Jevons and Charles Sanders Peirce, and was first presented systematically by Ernst Schröder and A. N. Whitehead.[60]
  36. In the 1930s and working independently, American electronic engineer Claude Shannon and Soviet logician Victor Shestakov[citation needed] both showed a one-to-one correspondence between the concepts of Boolean logic and certain electrical circuits, now called logic gates, which are now ubiquitous in digital computers.[61] They showed[62] that electronic relays and switches can realize the expressions of Boolean algebra. This thesis essentially founded practical digital circuit design.
  37. Electronic data processing[edit]
  38. Atanasoff–Berry Computer replica at first floor of Durham Center, Iowa State University
  39. Purely electronic circuit elements soon replaced their mechanical and electromechanical equivalents, at the same time that digital calculation replaced analog. Machines such as the Z3, the Atanasoff–Berry Computer, the Colossus computers, and the ENIAC were built by hand, using circuits containing relays or valves (vacuum tubes), and often used punched cards or punched paper tape for input and as the main (non-volatile) storage medium.[63]
  40. The engineer Tommy Flowers joined the telecommunications branch of the General Post Office in 1926. While working at the research station in Dollis Hill in the 1930s, he began to explore the possible use of electronics for the telephone exchange. Experimental equipment that he built in 1934 went into operation 5 years later, converting a portion of the telephone exchange network into an electronic data processing system, using thousands of vacuum tubes.[43]
  41. In the US, John Vincent Atanasoff and Clifford E. Berry of Iowa State University developed and tested the Atanasoff–Berry Computer (ABC) in 1942,[64] the first electronic digital calculating device.[65] This design was also all-electronic, and used about 300 vacuum tubes, with capacitors fixed in a mechanically rotating drum for memory. However, its paper card writer/reader was unreliable, and work on the machine was discontinued. The machine's special-purpose nature and lack of a changeable, stored program distinguish it from modern computers.[66]
  42. The electronic programmable computer[edit]
  43. Main articles: Colossus computer and ENIAC
  44. Colossus was the first electronic digital programmable computing device, and was used to break German ciphers during World War II. It remained unknown, as a military secret, well into the 1970s
  45. During World War II, the British at Bletchley Park (40 miles north of London) achieved a number of successes at breaking encrypted German military communications. The German encryption machine, Enigma, was first attacked with the help of the electro-mechanical bombes.[67] They ruled out possible Enigma settings by performing chains of logical deductions implemented electrically. Most possibilities led to a contradiction, and the few remaining could be tested by hand.
  46. The Germans also developed a series of teleprinter encryption systems, quite different from Enigma. The Lorenz SZ 40/42 machine was used for high-level Army communications, termed "Tunny" by the British. The first intercepts of Lorenz messages began in 1941. As part of an attack on Tunny, Max Newman and his colleagues helped specify the Colossus.[68]
  47. Tommy Flowers, still a senior engineer at the Post Office Research Station[69] was recommended to Max Newman by Alan Turing[70] and spent eleven months from early February 1943 designing and building the first Colossus.[71][72] After a functional test in December 1943, Colossus was shipped to Bletchley Park, where it was delivered on 18 January 1944[73] and attacked its first message on 5 February.[66]
  48. Colossus rebuild seen from the rear
  49. Colossus was the world's first electronic digital programmable computer.[43] It used a large number of valves (vacuum tubes). It had paper-tape input and was capable of being configured to perform a variety of boolean logical operations on its data, but it was not Turing-complete. Nine Mk II Colossi were built (The Mk I was converted to a Mk II making ten machines in total). Colossus Mark I contained 1500 thermionic valves (tubes), but Mark II with 2400 valves, was both 5 times faster and simpler to operate than Mark 1, greatly speeding the decoding process. Mark 2 was designed while Mark 1 was being constructed. Allen Coombs took over leadership of the Colossus Mark 2 project when Tommy Flowers moved on to other projects.[74]
  50. Colossus was able to process 5,000 characters per second with the paper tape moving at 40 ft/s (12.2 m/s; 27.3 mph). Sometimes, two or more Colossus computers tried different possibilities simultaneously in what now is called parallel computing, speeding the decoding process by perhaps as much as double the rate of comparison.
  51. Colossus included the first ever use of shift registers and systolic arrays, enabling five simultaneous tests, each involving up to 100 Boolean calculations, on each of the five channels on the punched tape (although in normal operation only one or two channels were examined in any run). Initially Colossus was only used to determine the initial wheel positions used for a particular message (termed wheel setting). The Mark 2 included mechanisms intended to help determine pin patterns (wheel breaking). Both models were programmable using switches and plug panels in a way their predecessors had not been.
  52. ENIAC was the first Turing-complete electronic device, and performed ballistics trajectory calculations for the United States Army.[75]
  53. Without the use of these machines, the Allies would have been deprived of the very valuable intelligence that was obtained from reading the vast quantity of encrypted high-level telegraphic messages between the German High Command (OKW) and their army commands throughout occupied Europe. Details of their existence, design, and use were kept secret well into the 1970s. Winston Churchill personally issued an order for their destruction into pieces no larger than a man's hand, to keep secret that the British were capable of cracking Lorenz SZ cyphers (from German rotor stream cipher machines) during the oncoming cold war. Two of the machines were transferred to the newly formed GCHQ and the others were destroyed. As a result, the machines were not included in many histories of computing.[76] A reconstructed working copy of one of the Colossus machines is now on display at Bletchley Park.
  54. The US-built ENIAC (Electronic Numerical Integrator and Computer) was the first electronic programmable computer built in the US. Although the ENIAC was similar to the Colossus it was much faster and more flexible. It was unambiguously a Turing-complete device and could compute any problem that would fit into its memory. Like the Colossus, a "program" on the ENIAC was defined by the states of its patch cables and switches, a far cry from the stored program electronic machines that came later. Once a program was written, it had to be mechanically set into the machine with manual resetting of plugs and switches.
  55. It combined the high speed of electronics with the ability to be programmed for many complex problems. It could add or subtract 5000 times a second, a thousand times faster than any other machine. It also had modules to multiply, divide, and square root. High speed memory was limited to 20 words (about 80 bytes). Built under the direction of John Mauchly and J. Presper Eckert at the University of Pennsylvania, ENIAC's development and construction lasted from 1943 to full operation at the end of 1945. The machine was huge, weighing 30 tons, using 200 kilowatts of electric power and contained over 18,000 vacuum tubes, 1,500 relays, and hundreds of thousands of resistors, capacitors, and inductors.[77] One of its major engineering feats was to minimize the effects of tube burnout, which was a common problem in machine reliability at that time. The machine was in almost constant use for the next ten years.
  56. The stored-program computer[edit]
  57. Further information: List of vacuum tube computers
  58. Early computing machines had fixed programs. For example, a desk calculator is a fixed program computer. It can do basic mathematics, but it cannot be used as a word processor or a gaming console. Changing the program of a fixed-program machine requires re-wiring, re-structuring, or re-designing the machine. The earliest computers were not so much "programmed" as they were "designed". "Reprogramming", when it was possible at all, was a laborious process, starting with flowcharts and paper notes, followed by detailed engineering designs, and then the often-arduous process of physically re-wiring and re-building the machine.[78]
  59. With the proposal of the stored-program computer this changed. A stored-program computer includes by design an instruction set and can store in memory a set of instructions (a program) that details the computation.
  60. Theory[edit]
  61. Design of the von Neumann architecture, 1947
  62. The theoretical basis for the stored-program computer had been laid by Alan Turing in his 1936 paper. In 1945 Turing joined the National Physical Laboratory and began work on developing an electronic stored-program digital computer. His 1945 report ‘Proposed Electronic Calculator’ was the first specification for such a device.
  63. Meanwhile, John von Neumann at the Moore School of Electrical Engineering, University of Pennsylvania, circulated his First Draft of a Report on the EDVAC in 1945. Although substantially similar to Turing's design and containing comparatively little engineering detail, the computer architecture it outlined became known as the "von Neumann architecture". Turing presented a more detailed paper to the National Physical Laboratory (NPL) Executive Committee in 1946, giving the first reasonably complete design of a stored-program computer, a device he called the Automatic Computing Engine (ACE). However, the better-known EDVAC design of John von Neumann, who knew of Turing's theoretical work, received more publicity, despite its incomplete nature and questionable lack of attribution of the sources of some of the ideas.[43]
  64. Turing felt that speed and size of memory were crucial and he proposed a high-speed memory of what would today be called 25 KB, accessed at a speed of 1 MHz. The ACE implemented subroutine calls, whereas the EDVAC did not, and the ACE also used Abbreviated Computer Instructions, an early form of programming language.
  65. Manchester "baby"[edit]
  66. Main article: Manchester Small-Scale Experimental Machine
  67. Three tall racks containing electronic circuit boards
  68. A section of the Manchester Small-Scale Experimental Machine, the first stored-program computer
  69. The Manchester Small-Scale Experimental Machine, nicknamed Baby, was the world's first stored-program computer. It was built at the Victoria University of Manchester by Frederic C. Williams, Tom Kilburn and Geoff Tootill, and ran its first program on 21 June 1948.[79]
  70. The machine was not intended to be a practical computer but was instead designed as a testbed for the Williams tube, the first random-access digital storage device.[80] Invented by Freddie Williams and Tom Kilburn[81][82] at the University of Manchester in 1946 and 1947, it was a cathode ray tube that used an effect called secondary emission to temporarily store electronic binary data, and was used successfully in several early computers.
  71. Although the computer was considered "small and primitive" by the standards of its time, it was the first working machine to contain all of the elements essential to a modern electronic computer.[83] As soon as the SSEM had demonstrated the feasibility of its design, a project was initiated at the university to develop it into a more usable computer, the Manchester Mark 1. The Mark 1 in turn quickly became the prototype for the Ferranti Mark 1, the world's first commercially available general-purpose computer.[84]
  72. The SSEM had a 32-bit word length and a memory of 32 words. As it was designed to be the simplest possible stored-program computer, the only arithmetic operations implemented in hardware were subtraction and negation; other arithmetic operations were implemented in software. The first of three programs written for the machine found the highest proper divisor of 218 (262,144), a calculation that was known would take a long time to run—and so prove the computer's reliability—by testing every integer from 218 - 1 downwards, as division was implemented by repeated subtraction of the divisor. The program consisted of 17 instructions and ran for 52 minutes before reaching the correct answer of 131,072, after the SSEM had performed 3.5 million operations (for an effective CPU speed of 1.1 kIPS).
  73. Manchester Mark 1[edit]
  74. The Experimental machine led on to the development of the Manchester Mark 1 at the University of Manchester.[85] Work began in August 1948, and the first version was operational by April 1949; a program written to search for Mersenne primes ran error-free for nine hours on the night of 16/17 June 1949. The machine's successful operation was widely reported in the British press, which used the phrase "electronic brain" in describing it to their readers.
  75. The computer is especially historically significant because of its pioneering inclusion of index registers, an innovation which made it easier for a program to read sequentially through an array of words in memory. Thirty-four patents resulted from the machine's development, and many of the ideas behind its design were incorporated in subsequent commercial products such as the IBM 701 and 702 as well as the Ferranti Mark 1. The chief designers, Frederic C. Williams and Tom Kilburn, concluded from their experiences with the Mark 1 that computers would be used more in scientific roles than in pure mathematics. In 1951 they started development work on Meg, the Mark 1's successor, which would include a floating point unit.
  76. EDSAC[edit]
  77. The other contender for being the first recognizably modern digital stored-program computer[86] was the EDSAC,[87] designed and constructed by Maurice Wilkes and his team at the University of Cambridge Mathematical Laboratory in England at the University of Cambridge in 1949. The machine was inspired by John von Neumann's seminal First Draft of a Report on the EDVAC and was one of the first usefully operational electronic digital stored-program computer.[88]
  78. EDSAC ran its first programs on 6 May 1949, when it calculated a table of squares[89] and a list of prime numbers.The EDSAC also served as the basis for the first commercially applied computer, the LEO I, used by food manufacturing company J. Lyons & Co. Ltd. EDSAC 1 and was finally shut down on 11 July 1958, having been superseded by EDSAC 2 which stayed in use until 1965.[90]
  79. EDVAC[edit]
  80. ENIAC inventors John Mauchly and J. Presper Eckert proposed the EDVAC's construction in August 1944, and design work for the EDVAC commenced at the University of Pennsylvania's Moore School of Electrical Engineering, before the ENIAC was fully operational. The design would implement a number of important architectural and logical improvements conceived during the ENIAC's construction and would incorporate a high speed serial access memory.[91] However, Eckert and Mauchly left the project and its construction floundered.
  81. It was finally delivered to the U.S. Army's Ballistics Research Laboratory at the Aberdeen Proving Ground in August 1949, but due to a number of problems, the computer only began operation in 1951, and then only on a limited basis.
  82. Commercial computers[edit]
  83. The first commercial computer was the Ferranti Mark 1, built by Ferranti and delivered to the University of Manchester in February 1951. It was based on the Manchester Mark 1. The main improvements over the Manchester Mark 1 were in the size of the primary storage (using random access Williams tubes), secondary storage (using a magnetic drum), a faster multiplier, and additional instructions. The basic cycle time was 1.2 milliseconds, and a multiplication could be completed in about 2.16 milliseconds. The multiplier used almost a quarter of the machine's 4,050 vacuum tubes (valves).[92] A second machine was purchased by the University of Toronto, before the design was revised into the Mark 1 Star. At least seven of these later machines were delivered between 1953 and 1957, one of them to Shell labs in Amsterdam.[93]
  84. In October 1947, the directors of J. Lyons & Company, a British catering company famous for its teashops but with strong interests in new office management techniques, decided to take an active role in promoting the commercial development of computers. The LEO I computer became operational in April 1951[94] and ran the world's first regular routine office computer job. On 17 November 1951, the J. Lyons company began weekly operation of a bakery valuations job on the LEO (Lyons Electronic Office). This was the first business application to go live on a stored program computer.[95]
  85. Front panel of the IBM 650
  86. In June 1951, the UNIVAC I (Universal Automatic Computer) was delivered to the U.S. Census Bureau. Remington Rand eventually sold 46 machines at more than US$1 million each ($9.12 million as of 2016).[96] UNIVAC was the first "mass produced" computer. It used 5,200 vacuum tubes and consumed 125 kW of power. Its primary storage was serial-access mercury delay lines capable of storing 1,000 words of 11 decimal digits plus sign (72-bit words).
  87. IBM introduced a smaller, more affordable computer in 1954 that proved very popular.[97] The IBM 650 weighed over 900 kg, the attached power supply weighed around 1350 kg and both were held in separate cabinets of roughly 1.5 meters by 0.9 meters by 1.8 meters. It cost US$500,000[98] ($4.41 million as of 2016) or could be leased for US$3,500 a month ($30 thousand as of 2016).[96] Its drum memory was originally 2,000 ten-digit words, later expanded to 4,000 words. Memory limitations such as this were to dominate programming for decades afterward. The program instructions were fetched from the spinning drum as the code ran. Efficient execution using drum memory was provided by a combination of hardware architecture: the instruction format included the address of the next instruction; and software: the Symbolic Optimal Assembly Program, SOAP,[99] assigned instructions to the optimal addresses (to the extent possible by static analysis of the source program). Thus many instructions were, when needed, located in the next row of the drum to be read and additional wait time for drum rotation was not required.
  88. Microprogramming[edit]
  89. In 1951, British scientist Maurice Wilkes developed the concept of microprogramming from the realisation that the Central Processing Unit of a computer could be controlled by a miniature, highly specialised computer program in high-speed ROM. Microprogramming allows the base instruction set to be defined or extended by built-in programs (now called firmware or microcode).[100] This concept greatly simplified CPU development. He first described this at the University of Manchester Computer Inaugural Conference in 1951, then published in expanded form in IEEE Spectrum in 1955.[citation needed]
  90. It was widely used in the CPUs and floating-point units of mainframe and other computers; it was implemented for the first time in EDSAC 2,[101] which also used multiple identical "bit slices" to simplify design. Interchangeable, replaceable tube assemblies were used for each bit of the processor.[102]
  91. Magnetic storage[edit]
  92. Magnetic core memory. Each core is one bit.
  93. By 1954, magnetic core memory was rapidly displacing most other forms of temporary storage, including the Williams tube. It went on to dominate the field through the mid-1970s.[103]
  94. A key feature of the American UNIVAC I system of 1951 was the implementation of a newly invented type of metal magnetic tape, and a high-speed tape unit, for non-volatile storage. Magnetic tape is still used in many computers.[104] In 1952, IBM publicly announced the IBM 701 Electronic Data Processing Machine, the first in its successful 700/7000 series and its first IBM mainframe computer. The IBM 704, introduced in 1954, used magnetic core memory, which became the standard for large machines.
  95. IBM introduced the first disk storage unit, the IBM 350 RAMAC (Random Access Method of Accounting and Control) in 1956. Using fifty 24-inch (610 mm) metal disks, with 100 tracks per side, it was able to store 5 megabytes of data at a cost of US$10,000 per megabyte ($90 thousand as of 2016).[96][105]

comments powered by Disqus