Los números enteros
son signos o conjuntos de signos que permiten expresar una cantidad con relación a su unidad. El concepto proviene del latín numĕrus y posibilita diversas clasificaciones que dan a lugar a conjuntos como los números naturales (1, 2, 3, 4…), los números racionales y otros.
Los números enteros abarcan a los números naturales (los que se utilizan para contar los elementos de un conjunto), incluyendo al cero y a los números negativos (que son el resultado de restar a un número natural otro mayor). Por lo tanto, los números enteros son aquellos que no tienen parte decimal (es decir que 3,28, por ejemplo, no es un número entero).
Además de todo lo expuesto tampoco podemos obviar el hecho de que los números enteros nos sirven igualmente para establecer la altura de un monumento o de un elemento natural. Así, por ejemplo, podemos hablar de que el Mulhacén es el pico más alto que existe en la Península Ibérica pues está situado a 3.478 metros sobre el nivel del mar mientras que el Teide es el más alto de España al conseguir alcanzar los 3.718 metros.
Los números enteros negativos tienen diversas aplicaciones prácticas. Con ellos se puede señalar una temperatura bajo cero (“En estos momentos, la temperatura en Bariloche es de -10º”) o una profundidad bajo el nivel del mar (“El barco hundido fue hallado a -135 metros”).
Es importante tener en cuenta que los números enteros son el resultado de las operaciones más básicas (suma y resta), por lo que su utilización se remonta a la antigüedad. Los matemáticos hindúes del siglo VI ya postulaban la existencia de números negativos.
De la misma forma, tampoco podemos pasar por alto el hecho de que también podemos llevar a cabo tareas de multiplicación con los llamados números enteros. En este caso es importante subrayar que ahí hay que realizar la determinación, por un lado, de lo que son los signos de los números que participan en la operación y por otro lado, del producto de los valores absolutos.
Así, en el primer caso, en el de los signos, hay que subrayar una serie de reglas que hay que tener muy en cuenta. De tal manera que + por + es igual a +; – por – es igual a +; + por – es igual a -; y – por + es igual a -.
Ejemplos para entender estas reglas expuestas pueden ser los siguientes: +5 x +6= +30; -8 x -2= +16; +4 x -2= -8; -6 x +3= – 18.
En materia de multiplicación hay que subrayar además que existen diversas propiedades como son la asociativa, la distributiva o la conmutativa.
La noción de números enteros fue establecida ya que se trata de números que permiten representar unidades no divisibles, como una persona o un país (no puede decirse “En mi casa viven 4,2 personas” o “El próximo campeonato mundial tendrá la participación de 24,69 países”). Los números con decimales, en cambio, pueden indicar unidades divisibles.
Propiedades de los números enteros
Orden numérico. Es el que da la idea de que un número es mayor o menor que otro número, o que hay diferencia real entre dos números. Ejemplo: el orden de los cursos de la educación primaria es (1º primero, 2º segundo, 3º tercero, 4º cuarto, 5º quinto)
Número mayor: Que supera en cantidad a otro.
Número menor: Que es inferior en cantidad a otro.
El número siguiente a otro, es el número considerado más una unidad , por ejemplo 6 = 5 + 1.
El número anterior a otro, es el número considerado menos una unidad, por ejemplo 4 = 5 – 1.
Recta numérica. es la que está dividida en intervalos iguales de distancia. La diferencia entre una división y la siguiente es siempre la unidad (1).
Suma de números enteros
1. Si los números enteros tienen el mismo signo, se suman los valores absolutos y al resultado se le coloca el signo común.
3 + 5 = 8
(−3) + (−5) = − 8
2. Si números enteros son de distinto signo, se restan los valores absolutos (al mayor le restamos el menor) y al resultado se le coloca el signo del número de mayor valor absoluto.
− 3 + 5 = 2
3 + (−5) = − 2
Propiedades de la suma de números enteros
1. Interna:
a + b
3 + (−5)
2. Asociativa:
(a + b) + c = a + (b + c) •
(2 + 3) + (− 5) = 2 + [3 + (− 5)]
5 − 5 = 2 + (− 2)
0 = 0
3. Conmutativa:
a + b = b + a
2 + (− 5) = (− 5) + 2
− 3 = − 3
4. Elemento neutro:
a + 0 = a
(−5) + 0 = − 5
5. Elemento opuesto
a + (-a) = 0
5 + (−5) = 0
−(−5) = 5
Resta de números enteros
La diferencia de los números enteros se obtiene sumando al minuendo el opuesto del sustraendo.
a - b = a + (-b)
7 − 5 = 2
7 − (−5) = 7 + 5 = 12
Propiedades de la resta de números enteros
1. Interna:
a − b
10 − (−5)
2. No es Conmutativa:
a - b ≠ b - a
5 − 2 ≠ 2 − 5
Multiplicación de números enteros
La multiplicación de varios números enteros es otro número entero, que tiene como valor absoluto el producto de los valores absolutos y, como signo, el que se obtiene de la aplicación de laregla de los signos.
Regla de los signos
2 • 5 = 10
(−2) • (−5) = 10
2 • (−5) = − 10
(−2) • 5 = − 10
Propiedades de la multiplicación de números enteros
1. Interna:
a • b
2 • (−5)
2. Asociativa:
(a • b) • c = a • (b • c)
(2 • 3) • (−5) = 2• [(3 • (−5)]
6 • (−5) = 2 • (−15)
-30 = -30
3. Conmutativa:
a • b = b • a
2 • (−5) = (−5) • 2
-10 = -10
4. Elemento neutro:
a •1 = a
(−5)• 1 = (−5)
5. Distributiva:
a • (b + c) = a • b + a • c
(−2)• (3 + 5) = (−2) • 3 + (−2) • 5
(−2)• 8 =- 6 - 10
-16 = -16
6. Sacar factor común:
a • b + a • c = a • (b + c)
(−2) • 3 + (−2) • 5 = (−2) • (3 + 5)
División de números enteros
La división de dos números enteros es otro número entero, que tiene como valor absoluto el cociente de los valores absolutos y, como signo, el que se obtiene de la aplicación de la regla de los signos.
10 : 5 = 2
(−10) : (−5) = 2
10 : (−5) = − 2
(−10) : 5 = − 2
Propiedades de la división de números enteros
1. No es una operación interna:
(−2) : 6
2. No es Conmutativo:
a : b ≠ b : a
6 : (−2) ≠ (−2) : 6